切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (07) : 542 -548. doi: 10.3877/cma.j.issn.1672-6448.2019.07.009

所属专题: 乳腺超声 文献

浅表器官超声影像学

常规超声与S-Detect技术在乳腺病灶良恶性鉴别诊断中的效能比较
程慧芳1, 王学梅1,(), 李响1, 闫虹1, 张义侠1, 康姝1   
  1. 1. 110001 沈阳,中国医科大学附属第一医院超声科
  • 收稿日期:2018-09-21 出版日期:2019-07-01
  • 通信作者: 王学梅

Efficacy of conventional ultrasound and S-Detect in differential diagnosis of benign and malignant breast lesions

Huifang Cheng1, Xuemei Wang1,(), Xiang Li1, Hong Yan1, Yixia Zhang1, Shu Kang1   

  1. 1. Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, China
  • Received:2018-09-21 Published:2019-07-01
  • Corresponding author: Xuemei Wang
  • About author:
    Corresponding author: Wang Xuemei, Email:
引用本文:

程慧芳, 王学梅, 李响, 闫虹, 张义侠, 康姝. 常规超声与S-Detect技术在乳腺病灶良恶性鉴别诊断中的效能比较[J]. 中华医学超声杂志(电子版), 2019, 16(07): 542-548.

Huifang Cheng, Xuemei Wang, Xiang Li, Hong Yan, Yixia Zhang, Shu Kang. Efficacy of conventional ultrasound and S-Detect in differential diagnosis of benign and malignant breast lesions[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(07): 542-548.

目的

探讨常规超声与S-Detect技术在乳腺病灶良恶性鉴别诊断中的效能比较。

方法

选取2018年6月至7月在中国医科大学附属第一医院经手术病理证实的367例乳腺病灶患者,共468个病灶。所有病灶分别由3名不同年资(1、4、7年)乳腺超声医师进行二维超声成像(静态图像及动态图像)的两次乳腺超声影像报告与数据系统(BI-RADS)分类以及计算机S-Detect分类,通过绘制不同BI-RADS分类诊断组的ROC曲线,确定最佳诊断界值,以进行各组BI-RADS分类的良恶性统计,以病理结果为"金标准",应用诊断试验四格表分别计算不同BI-RADS分类诊断组及S-Detect分类组对乳腺病灶良恶性诊断的敏感度、特异度、准确性、阳性预测值及阴性预测值,采用χ2检验分别将各BI-RADS分类组诊断效能与S-Detect分类组进行比较。绘制各组的ROC曲线,应用Z检验分别将各BI-RADS分类组ROC曲线下面积与S-Detect分类组进行比较。

结果

468个乳腺病灶术后病理诊断良性313个,恶性155个。通过绘制不同BI-RADS分类诊断组的ROC曲线,确定最佳诊断界值为BI-RADS 4a类。S-Detect分类诊断敏感度93.5%明显高于低年资医师静态图像BI-RADS分类诊断69.0%及低年资医师动态录像BI-RADS分类诊断72.3%,差异有统计学意义(χ2=30.627、24.785,P均<0.001),S-Detect分类诊断特异度83.7%,明显低于中年资医师动态图像BI-RADS分类诊断92.0%,差异有统计学意义(χ2=10.124,P=0.001),其余各诊断效能差异均无统计学意义(P均>0.05)。S-Detect分类诊断曲线下面积0.917高于低年资医师两次(静态图像及动态图像)BI-RADS分类0.790、0.803,差异均有统计学意义(Z=5.271、4.693,P均<0.0001);S-Detect分类诊断曲线下面积与中年资医师静态BI-RADS分类0.917比较,差异无统计学意义(P>0.05),低于中年资医师动态BI-RADS分类0.941,差异有统计学意义(Z=4.327,P<0.0001);S-Detect分类诊断曲线下面积均低于高年资医师两次BI-RADS分类0.946、0.959,差异均有统计学意义(Z=4.225、5.477,P均<0.0001)。

结论

S-Detect分类技术可以达到中年资医师静态图像BI-RADS分类的诊断水平,但低于其动态图像的诊断水平。

Objective

To compare the efficacy of conventional ultrasound and S-Detect in the differential diagnosis of benign and malignant breast lesions.

Methods

A total of 468 lesions were identified from 367 patients with breast lesions confirmed by surgery and pathology from June to July in 2018. Both the man-made BI-RADS classifications (still images and dynamic videos identified by three specialist physicians with 1, 4, and 7 years of experience, respectively) and computer S-Detect classification were performed. By plotting the ROC curves of different BI-RADS classification groups, the optimal diagnostic cutoff values were determined. Using pathological results as the gold standard, and the diagnostic test four grids were used to calculate the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of different BI-RADS classifications and S-Detect classification in the diagnosis of benign and malignant breast lesions, and chi-square tests were used to compare the diagnostic efficacy between groups. The ROC curves of each group were plotted, and the area under the ROC curve (AUC) of each BI-RADS classification group was compared with the S-Detect classification group by the Z-test.

Results

Of 468 breast lesions, 313 were confirmed to be benign lesions and 155 confirmed to be malignant lesions by pathological biopsy. The optimal diagnostic cut-off value was determined to be BI-RADS 4a by plotting the ROC curves for different BI-RADS classification diagnostic groups. The sensitivity of S-Detect classification diagnosis was 93.5%, which was significantly higher than those (69.0% and 72.3%) of the 1-year physician by BI-RADS classifications (still images and dynamic videos, respectively, χ2=30.627 and 24.785, respectively, P=0.000 for both). The specificity of S-Detect classification diagnosis was 83.7%, which was significantly lower than that (92.0%) of the 4-year physician by BI-RADS classification (dynamic videos, χ2=10.124, P=0.001). The differences in other diagnostic comparisons were not statistically significant (P>0.05). The AUC of S-Detect classification was 0.917, significantly higher than those (0.790 and 0.803) of the 1-year physician by BI-RADS classifications (still images and dynamic videos, respectively, Z=5.271 and 4.693, respectively, P<0.0001 for both). The difference between the AUC of S-Detect and that of 4-year physician by BI-RADS classification (still images) was not statistically significant (P>0.05). The AUC of S-Detect was lower than that (0.941) of 4-year physician by BI-RADS classification (dynamic videos, Z=4.327, P<0.0001). The AUC of S-Detect classification was lower than those (0.946 and 0.959) of the 7-year physician by BI-RADS classifications (still images and dynamic videos, respectively, Z=4.225 and 5.477, respectively; P<0.0001 for both).

Conclusion

The S-Detect classification can achieve the diagnostic level of the 4-year physician by BI-RADS classification of still images, but is lower than that by dynamic videos.

图1 S-Detect技术诊断1例乳腺恶性肿瘤S-Detect自动勾勒出乳腺肿块(黄色箭头所示),分析超声图像上肿块形状不规则、低回声、浅分叶边缘、平行生长等特征(黄色椭圆区),得出肿块可能是恶性的诊断(红色椭圆区)
图2 S-Detect分类系统与不同年资医师对乳腺病灶静态图像诊断的受试者工作特征曲线
图3 S-Detect分类系统与不同年资医师对乳腺病灶动态录像诊断的受试者工作特征曲线
表1 不同年资医师对乳腺病灶静态图像的BI-RADS分类结果
表2 不同年资医师对乳腺病灶动态录像的BI-RADS分类结果
表3 S-Detect分类与不同年资医师静态图像乳腺超声影像报告与数据系统分类诊断效能对比
表4 S-Detect分类与不同年资医师动态图像乳腺超声影像报告与数据系统分类诊断效能对比
1
彭卫军, 顾雅佳. 重视乳腺影像学检查技术和诊断水平的普及及提高为降低我国乳腺癌发病率而努力[J]. 中华放射性杂志, 2009, 43(5): 453-454.
2
Chang RF, Chang-Chien KC, Takada E, et al. Rapid image stitching and computer-aided detection for multipass automated breast ultrasound [J]. Med Phys, 2010, 37(5): 2063-2073.
3
Athanasiou A, Aubert E, Vincent Salomon A, et al. Complex cystic breast masses in ultrasound examination [J]. Diagn Interv Imaging, 2014, 95(2): 169-179.
4
Chen DR, Chien CL, Kuo YF. Computer-aided assessment of tumor grade for breast cancer in ultrasound images [J]. Comput Math Methods Med, 2015: 914091.
5
周建桥, 詹维伟. 超声乳腺影像报告数据系统及其解读[J/CD]. 中华医学超声杂志(电子版), 2011, 10(3): 1332-1341.
6
D′Orsi CJ, Sickles EA, Mendelson EB, et al. ACR BI-RADS Atlas, Breast Imaging Reporting and Data System [M]. Reston, VA: American College of Radiology, 2013.
7
周永刚, 袁丽君, 邢长洋, 等. 超声S-Detect分类技术在乳腺包块良恶性诊断中的应用价值[J]. 中华超声影像学杂志, 2017, 26(12): 1053-1056.
8
林韵, 王小燕. 乳腺癌超声征象与分子生物学指标相关性的研究进展[J]. 医学综述, 2014, 20(5): 800-803.
9
肖丽, 周平, 李瑞珍, 等. 麦默通与Tru-cut活检针对乳腺肿块活检的对比分析[J]. 中南大学学报(医学版), 2006, 31(3): 417-479.
10
Wang Y, Fan W, Zhao S, et al. Qualitative, quantitative and combination score systems in differential diagnosis of breast lesions by contrast-enhanced ultrasound [J]. Eur J Radiol, 2016, 85(1): 48-54.
11
Sellami L, Ben Sassi O, Chtourou K, et al. Breast cancer ultrasound images′ sequence exploration using BI-RADS features′ extraction: towards an advanced clinical aided tool for precise lesion characterization [J]. IEEE Trans Nanobioscience, 2015, 14(7): 740-745.
12
姜海燕, 刘爱玲, 韩东明. S-DetectT M技术在乳腺肿物诊断中的应用分析[J]. 河南医学研究, 2016, 25(6): 979-981.
13
韩红, 俞清, 赵磊, 等. 超声S-Detect技术在甲状腺肿瘤诊断中的初步应用[J]. 中华超声影像学杂志, 2018, 27(1): 28-30.
14
蒋玲, 罗莹, 彭玉兰, 等. 超声图像特征参数分析在乳腺肿瘤鉴别诊断中的应用[J]. 中国组织工程研究与临床康复, 2010, 14(26): 4836-4840.
15
古丽巴合尔, 蒋学祥, 王宵英. 乳腺癌影像诊断研究现状和发展方向[J]. 中国医学影像学杂志, 2010, 18(6): 506-509.
16
Kim K, Song MK, Kim EK, et al. Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologist [J]. Ultrasonography, 2017, 36(1): 3-9.
[1] 魏淑婕, 惠品晶, 丁亚芳, 张白, 颜燕红, 周鹏, 黄亚波. 单侧颈内动脉闭塞患者行颞浅动脉-大脑中动脉搭桥术的脑血流动力学评估[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1046-1055.
[2] 张璇, 马宇童, 苗玉倩, 张云, 吴士文, 党晓楚, 陈颖颖, 钟兆明, 王雪娟, 胡淼, 孙岩峰, 马秀珠, 吕发勤, 寇海燕. 超声对Duchenne肌营养不良儿童膈肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1068-1073.
[3] 朱连华, 费翔, 韩鹏, 姜波, 李楠, 罗渝昆. 高帧频超声造影在胆囊息肉样病变中的鉴别诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 904-910.
[4] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[5] 陈舜, 薛恩生, 叶琴. PDCA在持续改进超声危急值管理制度中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(09): 974-978.
[6] 周钰菡, 肖欢, 唐毅, 杨春江, 周娟, 朱丽容, 徐娟, 牟芳婷. 超声对儿童髋关节暂时性滑膜炎的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 795-800.
[7] 刘欢颜, 华扬, 贾凌云, 赵新宇, 刘蓓蓓. 颈内动脉闭塞病变管腔结构和血流动力学特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 809-815.
[8] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[9] 张丽丽, 陈莉, 余美琴, 聂小艳, 王婧玲, 刘婷. PDCA循环法在超声浅表器官亚专科建设中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(07): 717-721.
[10] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[11] 黄佳, 石华, 张玉国, 胡佳琪, 陈茜. 胎儿左头臂静脉正常与异常超声图像特征及其临床意义[J]. 中华医学超声杂志(电子版), 2023, 20(06): 610-617.
[12] 袁泽, 庄丽. 超声检测胎儿脐动脉和大脑中动脉血流对胎儿宫内窘迫的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 618-621.
[13] 蒋佳纯, 王晓冰, 陈培荣, 许世豪. 血清学指标联合常规超声及超声造影评分诊断原发性干燥综合征的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 622-630.
[14] 武壮壮, 张晓娟, 史泽洪, 史瑶, 原韶玲. 超声联合乳腺X线摄影及PR、Her-2预测高级别与中低级别乳腺导管原位癌的价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 631-635.
[15] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
阅读次数
全文


摘要