切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2020, Vol. 17 ›› Issue (08) : 748 -752. doi: 10.3877/cma.j.issn.1672-6448.2020.08.007

所属专题: 乳腺超声 文献

浅表器官超声影像学

S-Detect超声检查对乳腺病灶诊断价值的探索性研究
马洁玲1, 王心怡1, 张楠1, 秦王燕1, 常洪晶1, 廖盛日1, 霍苓,1   
  1. 1. 100142 北京大学肿瘤医院 北京市肿瘤防治研究所乳腺中心 恶性肿瘤发病机制及转化研究教育部重点实验室
  • 收稿日期:2020-06-11 出版日期:2020-08-01
  • 通信作者: 霍苓

Value of S-Detect in diagnosis of breast lesions

Ma Ma1, Wang Wang1, Zhang Zhang1, Qin Qin1, Chang Chang1, Liao Liao1, Huo Huo,1   

  1. 1. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Breast Diseases, Beijing Cancer Hospital, Beijing Institute for Cancer Reasearch, Beijing, 100142, China
  • Received:2020-06-11 Published:2020-08-01
  • Corresponding author: Huo Huo
引用本文:

马洁玲, 王心怡, 张楠, 秦王燕, 常洪晶, 廖盛日, 霍苓. S-Detect超声检查对乳腺病灶诊断价值的探索性研究[J]. 中华医学超声杂志(电子版), 2020, 17(08): 748-752.

Ma Ma, Wang Wang, Zhang Zhang, Qin Qin, Chang Chang, Liao Liao, Huo Huo. Value of S-Detect in diagnosis of breast lesions[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2020, 17(08): 748-752.

目的

探讨S-Detectd的诊断效能及其临床应用价值。

方法

选取2019年4月至7月于北京大学肿瘤医院乳腺中心超声室接受超声诊断及S-Detect检查的患者378例,共计390个病灶进行回顾性分析。以组织病理诊断为金标准,应用诊断试验四格表分别计算超声医师及S-Detect对乳腺病灶良恶性诊断的敏感度、特异度、准确性、阳性预测值及阴性预测值,采用Kappa检验对S-Detect及超声医师与病理诊断结果的一致性进行分析;对S-Detect判断不确定的病灶进行假设判定,假设判定均为恶性为S-Detect 1、均为良性为S-Detect 2,并分别计算S-Detect 1与S-Detect2的诊断敏感度、特异度、准确性、阳性预测值及阴性预测值。

结果

病理结果提示,378例患者共计390个病灶中恶性病灶260个,良性病灶130个。S-Detect的诊断敏感度、特异度、阳性预测值、阴性预测值与准确性分别为94.6%、56.2%、81.2%、83.9%、81.8%。超声医师的诊断敏感度、特异度、阳性预测值、阴性预测值与准确性分别为100.0%、9.2%、71.0%、100.0%、69.7%。Kappa分析结果显示:S-Detect与病理诊断结果的一致性较超声医师与病理诊断结果的一致性好(Kappa值:0.553 vs 0.119,P<0.05)。将S-Detect判断不确定的69个病灶进行假设判定,结果显示,S-Detect 1的诊断敏感度、特异度、阳性预测值、阴性预测值和准确性分别为94.6%、56.2%、81.2%、83.9%、81.8%;S-Detect 2的诊断敏感度、特异度、阳性预测值、阴性预测值和准确性分别为79.6%、79.2%、88.5%、66.0%、79.5%。

结论

S-Detect技术对乳腺病灶具有一定的诊断价值,尤其对于良性病灶的诊断符合率优于超声医师,但在临床应用中仍存在部分病灶判断不明确等局限性,如何在临床中更加恰当地结合使用S-Detect还需要更深入的数据研究加以证实。

Objective

To assess the diagnostic efficiency and clinical application value of S-Detect in breast lesions.

Methods

A total of 378 patients with 390 breast lesions who underwent ultrasound and S-Detect examinations at the Ultrasound Department of the Center for Breast Diseases of Peking University Cancer Hospital (Beijing Cancer Hospital) from April to July 2019 were selected for this retrospective analysis. Taking histopathological diagnosis as the gold standard, the four-fold table method was used to calculate the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of ultrasound and S-Detect for the diagnosis of benign and malignant breast lesions. The Kappa test was used to examine the consistency of the results of ultrasound and S-Detect with the pathological diagnosis. Hypothetical judgments were made on the lesions with an uncertain diagnosis by S-Detect, in which those judged as malignant and benign lesions were designated as S-Detect 1 and S-Detect 2, respectively, and the diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for S-Detect 1 and S-Detect 2 were calculated.

Results

The pathological results showed that among the 390 lesions in the 378 patients, 260 were malignant lesions and 130 were benign lesions. The diagnostic sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of S-Detect were 94.6%, 56.2%, 81.2%, 83.9%, and 81.8%, respectively; the corresponding values of ultrasound were 100.0%, 9.2%, 71.0%, 100.0%, and 69.7%. Kappa analysis showed that the consistency between S-Detect and pathological diagnosis results was better than that between ultrasound and pathological diagnosis results (Kappa value: 0.553 vs 0.119, P<0.05). Sixty-nine lesions with an uncertain diagnosis by S-Detect underwent hypothetical judgments. The results showed that the diagnostic sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for S-Detect 1 were 94.6%, 56.2%, 81.2%, 83.9%, and 81.8%, respectively; the corresponding values for S-Detect 2 were 79.6%, 79.2%, 88.5%, 66.0%, and 79.5%.

Conclusion

S-Detect technology has appreciated diagnostic value for breast lesions; especially for benign lesions, the diagnostic performance is better than that of ultrasound. However, there are some limitations in clinical application such as unclear judgment of some lesions. How to use S-Detect more appropriately in clinical setting requires more in-depth research to confirm.

图1 左乳内侧病灶超声图像。图示病灶形状比较规则、边界较清晰,S-Detect判定病灶为良性,超声医师评估病灶为BI-RADS 4b,病理诊断结果为乳腺实性乳头状癌
表1 S-Detect、超声医师与组织病理诊断结果比较(个)
表2 S-Detect 1、S-Detect 2与组织病理诊断结果比较(个)
1
Wu C, Li M, Meng H, et al. Analysis of status and countermeasures of cancer incidence and mortality in China[J]. Sci China Life Sci, 2019, 62(5): 640-647.
2
Segin MD, de Soccio V, Cantisani V, et al. Automated classification of focal breast lesions according to Sdetect: validation and role as a clinical and teaching tool[J]. J Ultrasound, 2018, 21(2): 105-118.
3
American College of Radiolofy. Breast Imaging Reporting and Data System (BI-RADS). Ultrasound.5 th ed. [M]. Reston,VA: American College of Radiology, 2013: 221-362.
4
Cho E, Kim EK, Song MK, et al. Application of Computer-Aided Diagnosis on Breast Ultrasonography: Evaluation of Diagnostic Performances and Agreement of Radiologists According to Different Levels of Experience[J]. J Ultrasound Med, 2018, 37: 209-216.
5
李响,程慧芳,闫虹, 等. 常规超声联合S-Detect技术对乳腺病灶的诊断价值[J]. 中国超声医学杂志, 2019, 35(3): 39-42.
6
Zhao C, Xiao M, Jiang Y, et al. Feasibility of computer-assisted diagnosis for breast ultrasound: the results of the diagnostic performance of S-detect from a single center in China[J]. Cancer Manag Res, 2019, 11: 921-930.
7
Xiao M, Zhao C, Zhu Q, et al. An investigation of the classification accuracy of a deep learning framework-based computer-aided diagnosis system in different pathological types of breast lesions[J]. J Thorac Dis, 2019, 11(12): 5023-5031.
8
Watanabe T, Yamaguchi T, Tsunoda H, et al. Ultrasound Image Classification of Ductal Carcinoma in Situ (DCIS) of the Breast: Analysis of 705 DCIS Lesions[J]. Ultrasound Med Biol, 2017, 43(5): 918-925.
9
Ko KH, Hsu HH, Yu JC, et al. Non-mass-like breast lesions at ultrasonography: Feature analysis and BI-RADS assessment[J]. Eur J Radiol, 2015, 84(1): 77-85.
10
Wu JY, Zhao ZZ, Zhang WY, et al. Computer-Aided Diagnosis of Solid Breast Lesions With Ultrasound:Factors Associated With false-negative and False-positive Results[J]. J Ultrasound Med, 2019, 38(12): 3193-3202.
[1] 杨忠, 时敬业, 邓学东, 姜纬, 殷林亮, 潘琦, 梁泓, 马建芳, 王珍奇, 张俊, 董姗姗. 产前超声在胎儿22q11.2 微缺失综合征中的应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(09): 852-858.
[2] 孙佳丽, 金琳, 沈崔琴, 陈晴晴, 林艳萍, 李朝军, 徐栋. 机器人辅助超声引导下经皮穿刺的体外实验研究[J]. 中华医学超声杂志(电子版), 2024, 21(09): 884-889.
[3] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[4] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[5] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[6] 项文静, 徐燕, 茹彤, 郑明明, 顾燕, 戴晨燕, 朱湘玉, 严陈晨. 神经学超声检查在产前诊断胼胝体异常中的应用价值[J]. 中华医学超声杂志(电子版), 2024, 21(05): 470-476.
[7] 胡可, 鲁蓉. 基于多参数超声特征的中老年女性压力性尿失禁诊断模型研究[J]. 中华医学超声杂志(电子版), 2024, 21(05): 477-483.
[8] 张妍, 原韶玲, 史泽洪, 郭馨阳, 牛菁华. 小肾肿瘤超声漏诊原因分析新思路[J]. 中华医学超声杂志(电子版), 2024, 21(05): 500-504.
[9] 席芬, 张培培, 孝梦甦, 刘真真, 张一休, 张璟, 朱庆莉, 孟华. 乳腺错构瘤的临床与超声影像学特征分析[J]. 中华医学超声杂志(电子版), 2024, 21(05): 505-510.
[10] 侯中光, 詹韵韵, 毕玉, 王佳佳, 吴瑕璧, 彭梅. 三维反转成像技术在BI-RADS 4类乳腺肿块应用中的初步研究[J]. 中华医学超声杂志(电子版), 2024, 21(04): 370-376.
[11] 袁晓峰, 惠品晶, 颜燕红, 张炎, 蔡忻懿. 椎动脉椎间段血流动力学参数评估椎动脉颅内段狭窄性病变的效能及可行性研究[J]. 中华医学超声杂志(电子版), 2024, 21(04): 399-407.
[12] 龚艺燃, 李雯婷, 方雅滨, 杨楷熠, 何聚馨, 陈树强. 超声评估远端指间关节指伸肌腱附着点炎对炎性关节病的临床诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 408-413.
[13] 金从稳, 陈霖霖, 刘浩, 余有声, 陈本鑫. 超声联合细针穿刺定位在乳腺微小病灶切除中的应用研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 423-426.
[14] 张红君, 郑博文, 廖梅, 任杰. 超声及超声造影在肝移植术后上腹部淋巴结良恶性鉴别诊断中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 562-567.
[15] 陈秀晓, 隋文倩, 王珉鑫, 吴圆圆. 腹股沟斜疝并腹腔游离体超声表现一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 516-517.
阅读次数
全文


摘要