[1] |
Hollander M, Bots ML, Del Sol AI, et al. Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly: the Rotterdam study[J]. Circulation, 2002,105(24):2872–2877.
|
[2] |
Gomez CR. Carotid plaque morphology and risk for stroke[J]. Stroke, 1990, 21(1):148–151.
|
[3] |
Grønholdt ML. Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery[J]. Arterioscler Thromb Vasc Biol, 1999,19(1):2–13.
|
[4] |
Chen Q, Liu Y, Pei L, et al. Characteristics of carotid artery disease (CAD) and presenting cerebrovascular symptoms in an aged group[J]. Int J Cardiovasc Imaging, 2009, 25(2):127–132.
|
[5] |
MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. European Carotid Surgery Trialists' Collaborative Group[J]. Lancet, 1991, 337(8752):1235–1243.
|
[6] |
Ouhlous M, Flach HZ, de Weert TT, et al. Carotid plaque composition and cerebral infarction: MR imaging study[J]. AJNR Am J Neuroradiol, 2005, 26(5):1044–1049.
|
[7] |
Grigioni M, Daniele C, D'Avenio G, et al. The role of wall shear stress in unsteady vascular dynamics[J]. Progress in Biomedical Research, 2002, 7(3), 204–212.
|
[8] |
Nerem RM. Vascular fluid mechanics, the arterial wall, and atherosclerosis[J]. J Biomech Eng, 1992, 114(3):274–282.
|
[9] |
Younis HF, Kaazempur-Mofrad MR, Chan RC, et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation[J]. Biomech Model Mechanobiol, 2004, 3(1):17–32.
|
[10] |
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis[J]. JAMA, 1999, 282(21):2035–2042.
|
[11] |
Kaazempur-Mofrad MR, Wada S, Myers JG, et al. Mass transport and fluid flow in stenosis arteries: Axisymmetric and aymmetric models[J]. International Journal of Heat and Mass Transfer, 2005, 48(21–22):4510–4517.
|
[12] |
Gnasso A, Carallo C, Irace C, et al. Association between wall shear stress and flow-mediated vasodilation in healthy men[J]. Atherosclerosis, 2001, 156(1):171–176.
|
[13] |
Mynard JP, Wasserman BA, Steinman DA. Errors in the estimation of wall shear stress by maximum Doppler velocity[J]. Atherosclerosis, 2013, 227(2):259–266.
|
[14] |
Irace C, Cortese C, Fiaschi E, et al. Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk[J]. Stroke, 2004, 35(2):464–468.
|
[15] |
Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods[J]. Hellenic J Cardiol, 2005, 46(1):9–15.
|
[16] |
Manbachi A, Hoi Y, Wasserman BA, et al. On the shape of the common carotid artery with implications for blood velocity profiles[J]. Physiol Meas, 2011, 32(12):1885–1897.
|
[17] |
Ford MD, Xie YJ, Wasserman BA, et al. Is flow in the common carotid artery fully developed?[J]. Physiol Meas, 2008, 29(11):1335–1349.
|
[18] |
Wood NB, Zhao SZ, Zambanini A, et al. Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease[J]. J Appl Physiol (1985), 2006, 101(5):1412–1418.
|
[19] |
柳兆荣, 章晓东, 许世雄. 用流量波形计算血管壁切应力[J]. 中国生物医学工程学报, 1988, 7(4):218–220.
|
[20] |
Simon AC, Levenson J, Flaud P. Pulsatile flow and oscillating wall shear stress in the brachial artery of normotensive and hypertensive subjects[J]. Cardiovasc Res, 1990, 24(2):129–136.
|
[21] |
Stroev PV, Hoskins PR, Easson WJ. Distribution of wall shear rate throughout the arterial tree: a case study[J]. Atherosclerosis, 2007, 191(2):276–280.
|
[22] |
黄忠洲, 杜健航. 动脉内壁剪切应力动态分布数值模拟研究[J]. 广东海洋大学学报, 2007, 27(3):103–106.
|
[23] |
Soulis JV, Farmakis TM, Giannoglou GD, et al. Molecular viscosity in the normal left coronary arterial tree. Is it related to atherosclerosis?[J]. Angiology, 2006, 57(1):33–40.
|
[24] |
Johnston BM, Johnston PR, Corney S, et al. Non-Newtonian blood flow in human right coronary arteries: transient simulations[J]. J Biomech, 2006, 39(6):1116–1128.
|
[25] |
Berger SA, Jou LD. Flows in stenotic vessels[J]. Annu Rev Fluid Mech, 2000, 32:347–382.
|
[26] |
Reneman RS, Arts T, Hoeks AP. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory[J]. J Vasc Res, 2006, 43(3):251–269.
|
[27] |
Efstathopoulos EP, Patatoukas G, Pantos I, et al. Wall shear stress calculation in ascending aorta using phase contrast magnetic resonance imaging. Investigating effective ways to calculate it in clinical practice[J]. Phys Med, 2008, 24(4):175–181.
|
[28] |
Box FM, van der Grond J, de Craen AJ, et al. Pravastatin decreases wall shear stress and blood velocity in the internal carotid artery without affecting flow volume: results from the PROSPER MRI study[J]. Stroke, 2007, 38(4):1374–1376.
|
[29] |
Johnston BM, Johnston PR, Corney S, et al. Non-Newtonian blood flow in human right coronary arteries: steady state simulations[J]. J Biomech, 2004, 37(5):709–720.
|
[30] |
Jeong SK, Rosenson RS. Shear rate specific blood viscosity and shear stress of carotid artery duplex ultrasonography in patients with lacunar infarction[J]. BMC Neurol, 2013, 13:36.
|
[31] |
Mishra BK, Pradhan P, Panda TC. Effect of shear stress, resistance and flow rate across mild stenosis on blood flow through blood vessels[J]. The Cardiology, 2010, 5(1):4–11.
|
[32] |
Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows[J]. Biorheology, 1991, 28(3–4):241–262.
|
[33] |
BLAIR GW. An equation for the flow of blood, plasma and serum through glass capillaries[J]. Nature, 1959,183(4661):613–614.
|
[34] |
Soulis JV, Giannoglou GD, Chatzizisis YS, et al. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery[J]. Med Eng Phys, 2008, 30(1):9–19.
|
[35] |
Liu GT, Wang XJ, Ai BQ, et al. Numerical study of pulsating flow through tapered artery with stenosis[J]. Chinese Journal of Physics, 2004, 42(4-I):401–409.
|
[36] |
Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis[J]. Proc R Soc Lond B Biol Sci, 1971, 177(1046):109–159.
|
[37] |
Younis HF, Kaazempur-Mofrad MR, Chan RC, et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation[J]. Biomech Model Mechanobiol, 2004, 3(1):17–32.
|
[38] |
王青, 王炜哲, 万大伟, 等. 三例人体颈动脉分叉管血液动力学的数值对比分析[J]. 水动力学研究与进展, 2009, 24(3):313–319.
|
[39] |
Rayz VL, Berger SA, Saloner D. Transitional flows in arterial fluid dynamics[J]. Comput Methods Appl Mech Engrg, 2007, 196:3043–3048.
|
[40] |
Moore JA, Steinman DA, Holdsworth DW, et al. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging[J]. Ann Biomed Eng, 1999, 27(1):32–41.
|
[41] |
Otsuki S, Tanaka M. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow[J]. Journal of Visualization, 2006, 9(1):69–82.
|
[42] |
Uejima T, Koike A, Sawada H, et al. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation[J]. Ultrasound Med Biol, 2010, 36(5):772–788.
|
[43] |
Hansen KL, Udesen J, Gran F, et al. In-vivo examples of flow patterns with the fast vector velocity ultrasound method[J]. Ultraschall Med, 2009, 30(5):471–477.
|
[44] |
Udesen J, Nielsen MB, Nielsen KR, et al. Examples of in vivo blood vector velocity estimation[J]. Ultrasound Med Biol, 2007, 33(4):541–548.
|
[45] |
Jensen JA, Munk P. A new method for estimation of velocity vectors[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1998, 45(3):837–851.
|
[46] |
Yiu BY, Lai SS, Yu AC. Vector projectile imaging: time-resolved dynamic visualization of complex flow patterns[J]. Ultrasound Med Biol, 2014, 40(9):2295–2309.
|
[47] |
Udesen J, Gran F, Hansen KL, et al. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2008, 55(8):1729–1743.
|