切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2017, Vol. 14 ›› Issue (01) : 11 -14. doi: 10.3877/cma.j.issn.1672-6448.2017.01.005

所属专题: 文献

综述

超声辐照联合微泡在溶栓治疗中的基础研究进展
万野1, 尹立雪2,()   
  1. 1. 637000 四川南充,川北医学院
    2. 610072 成都,四川省医学院科学院?四川省人民医院超声医学研究所 超声心脏电生理学与生物力学四川省重点实验室
  • 收稿日期:2016-03-01 出版日期:2017-01-01
  • 通信作者: 尹立雪
  • 基金资助:
    四川省科研院所科技成果转化项目(11010122)

Current fundamental study of ultrasonic irradiation combined with microbubbles in thrombolytic therapy

Ye Wan1, Lixue Yin2()   

  • Received:2016-03-01 Published:2017-01-01
  • Corresponding author: Lixue Yin
引用本文:

万野, 尹立雪. 超声辐照联合微泡在溶栓治疗中的基础研究进展[J]. 中华医学超声杂志(电子版), 2017, 14(01): 11-14.

Ye Wan, Lixue Yin. Current fundamental study of ultrasonic irradiation combined with microbubbles in thrombolytic therapy[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14(01): 11-14.

[1]
Porter TR, Xie F. Ultrasound, microbubbles, and thrombolysis [J]. Prog Cardiovasc Dis, 2001, 44(2):101-110.
[2]
Trubestein G, Engel C, Etzel F, et al. Thrombolysis by ultrasound [J]. Clin Sci Mol Med Suppl, 1976, 51(3):697s-698s.
[3]
郎鸿志,李波,赵春高, 等. 超声增强溶栓作用的体外实验研究[J]. 实用神经疾病杂志, 2005, 8(6):10-12.
[4]
Hitchcock KE, Ivancevich NM, Haworth KJ, et al. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model [J]. Ultrasound Med Biol, 2011, 37(8):1240-1251.
[5]
Datta S, Coussios CC, Ammi AY, et al. Ultrasound-enhanced thrombolysis using Definity as a cavitation nucleation agent [J]. Ultrasound Med Biol, 2008, 34(9):1421-1433.
[6]
Chernysh IN, Everbach CE, Purohit PK, et al. Molecular mechanisms of the effect of ultrasound on the fibrinolysis of clots [J]. J Thromb Haemost, 2015, 13(4):601-609.
[7]
张德俊. 超声空化及其生物医学效应[J]. 中国超声医学杂志, 1995, 11(7):510-512.
[8]
李晓东,王志刚. 超声波空化效应的生物学机制[J]. 临床超声医学杂志, 2004, 6(1):40-41.
[9]
Petit B, Bohren Y, Gaud E, et al. Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis [J]. Ultrasound Med Biol, 2015, 41(5):1402-1410.
[10]
Schafer S, Kliner S, Klinghammer L, et al. Influence of ultrasound operating parameters on ultrasound-induced thrombolysis in vitro [J]. Ultrasound Med Biol, 2005, 31(6):841-847.
[11]
Tsivgoulis G, Eggers J, Ribo M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies [J]. Stroke, 2010, 41(2):280-287.
[12]
Hynynen K. Focused ultrasound for blood-brain disruption and delivery of therapeutic molecules into the brain [J]. Expert Opin Drug Deliv, 2007, 4(1):27-35.
[13]
Tang SC, Clement GT. Standing-wave suppression for transcranial ultrasound by random modulation [J]. IEEE Trans Biomed Eng, 2010, 57(1):203-205.
[14]
Baron C, Aubry JF, Tanter M, et al. Simulation of intracranial acoustic fields in clinical trials of sonothrombolysis [J]. Ultrasound Med Biol, 2009, 35(7):1148-1158.
[15]
Daffertshofer M, Gass A, Ringleb P, et al. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial [J]. Stroke, 2005, 36(7):1441-1446.
[16]
Zhou XB, Qin H, Li J, et al. Platelet-targeted microbubbles inhibit re-occlusion after thrombolysis with transcutaneous ultrasound and microbubbles [J]. Ultrasonics, 2011, 51(3):270-274.
[17]
Wilhelm-Schwenkmezger T, Pittermann P, Zajonz K, et al. Therapeutic application of 20-kHz transcranial ultrasound in an embolic middle cerebral artery occlusion model in rats: safety concerns [J]. Stroke, 2007, 38(3):1031-1035.
[18]
Reuter P, Masomi J, Kuntze H, et al. Low-frequency therapeutic ultrasound with varied duty cycle: effects on the ischemic brain and the inner ear [J]. Ultrasound Med Biol, 2010, 36(7):1188-1195.
[19]
Wu J, Xie F, Kumar T, et al. Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration [J]. Ultrasound Med Biol, 2014, 40(7):1545-1553.
[20]
Tiukinhoy-Laing SD, Huang S, Klegerman M, et al. Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes [J]. Thromb Res, 2007, 119(6):777-784.
[21]
Borrelli MJ, O′Brien WD Jr, Hamilton E, et al. Influences of microbubble diameter and ultrasonic parameters on in vitro sonothrombolysis efficacy [J]. J Vasc Interv Radiol, 2012, 23(12):1677-1684.
[22]
Smith DA, Porter TM, Martinez J, et al. Destruction thresholds of echogenic liposomes with clinical diagnostic ultrasound [J]. Ultrasound Med Biol, 2007, 33(5):797-809.
[23]
Sutton JT, Ivancevich NM, Perrin SR Jr, et al. Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model [J]. Ultrasound Med Biol, 2013, 39(5):813-824.
[24]
Pacella JJ, Brands J, Schnatz FG, et al. Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study [J]. Ultrasound Med Biol, 2015, 41(2):456-464.
[25]
Stride E, Pancholi K, Edirisinghe MJ, et al. Increasing the nonlinear character of microbubble oscillations at low acoustic pressures [J]. J R Soc Interface, 2008, 5(24):807-811.
[26]
Vignon F, Shi WT, Powers JE, et al. Microbubble cavitation imaging [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2013, 60(4):661-670.
[27]
Kim JS, Leeman JE, Kagemann L, et al. Volumetric quantification of in vitro sonothrombolysis with microbubbles using high-resolution optical coherence Tomography [J]. J Biomed Opt, 2012, 17(7):070502.
[28]
Bader KB, Gruber MJ, Holland CK, et al. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis [J]. Ultrasound Med Biol, 2015, 41(1):187-196.
[29]
Datta S, Coussios CC, McAdory LE, et al. Correlation of cavitation with ultrasound enhancement of thrombolysis [J]. Ultrasound Med Biol, 2006, 32(8):1257-1267.
[30]
Yenari MA, Palmer JT, BracciPM, et al. Thrombolysis with tissue plasminogen activator(tPA) is temperature dependent [J]. Thromb Res, 1995, 77(5):475-481.
[31]
Acconcia C, Leung BY, Manjunath A, et al. The effect of short duration ultrasound pulses on the interaction between individual microbubbles and fibrin clots [J]. Ultrasound Med Biol, 2015, 41(10):2774-2782.
[32]
Soltani A, Volz KR, Hansmann DR. Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis [J]. Phys Med Biol, 2008, 53(23):6837-6847.
[33]
Acconcia C, Leung BY, Manjunath A, et al. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots [J]. Ultrasound Med Biol, 2014, 40(9):2134-2150.
[34]
Xie F, Slikkerveer J, Gao S, et al. Coronary and microvascular thrombolysis with guided diagnostic ultrasound and microbubbles in acute ST segment elevation myocardial infarction [J]. J Am Soc Echocardiogr, 2011, 24(12):1400-1408.
[35]
Porter TR, LeVeen RF, Fox R, et al. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles [J]. Am Heart J, 1996, 132(5):964-968.
[36]
Wu J, Xie F, Lof J, et al. Utilization of modified diagnostic ultrasound and microbubbles to reduce myocardial infarct size [J]. Heart, 2015, 101(18):1468-1474.
[37]
Slikkerveer J, Kleijn SA, Appelman Y, et al. Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study [J]. Ultrasound Med Biol, 2012, 38(2):247-252.
[38]
Nacu A, Kvistad CE, Logallo N, et al. A pragmatic approach to sonothrombolysis in acute ischaemic stroke: the Norwegian randomised controlled sonothrombolysis in acute stroke study(NOR-SASS) [J]. BMC Neurol, 2015, 15:110.
[39]
Wang X, Hagemeyer CE, Hohmann JD, et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice [J]. Circulation, 2012, 125(25):3117-3126.
[40]
Alonso A, Dempfle CE, Della Martina A, et al. In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound [J]. Thromb Res, 2009, 124(1):70-74.
No related articles found!
阅读次数
全文


摘要