切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2020, Vol. 17 ›› Issue (04) : 363 -369. doi: 10.3877/cma.j.issn.1672-6448.2020.04.013

所属专题: 文献

基础研究

IR780-VPN靶向纳米粒的制备及其对肾母细胞瘤的抑制作用
徐晓川1, 唐毅1,(), 陈镜宇1, 计晓娟1, 杨春江1, 朱丽容1   
  1. 1. 400014 重庆医科大学附属儿童医院超声科 儿童发育疾病研究教育部重点实验室 国家儿童健康与疾病临床医学研究中心(重庆) 儿童发育重大疾病国家国际科技合作基地 儿科学重庆市重点实验室
  • 收稿日期:2020-01-03 出版日期:2020-04-01
  • 通信作者: 唐毅
  • 基金资助:
    重庆市社会事业与民生保障科技创新专项(cstc2017shmsA130082); 中国博士后基金特别资助项目(2018T110949)

Preparation of IR780 and vincristine-loaded poly (lactic-co-glycolic acid) nanoparticles and antinep-hroblastoma cells proliferation in vitro

Xiaochuan Xu1, Yi Tang1,(), Jingyu Chen1, Xiaojuan Ji1, Chunjiang Yang1, Lirong Zhu1   

  1. 1. Department of Ultrasound, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics; Children′s Hospital of Chongqing Medical University, Chongqing 400014, China
  • Received:2020-01-03 Published:2020-04-01
  • Corresponding author: Yi Tang
  • About author:
    Corresponding author: Tang Yi, Email:
引用本文:

徐晓川, 唐毅, 陈镜宇, 计晓娟, 杨春江, 朱丽容. IR780-VPN靶向纳米粒的制备及其对肾母细胞瘤的抑制作用[J]. 中华医学超声杂志(电子版), 2020, 17(04): 363-369.

Xiaochuan Xu, Yi Tang, Jingyu Chen, Xiaojuan Ji, Chunjiang Yang, Lirong Zhu. Preparation of IR780 and vincristine-loaded poly (lactic-co-glycolic acid) nanoparticles and antinep-hroblastoma cells proliferation in vitro[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2020, 17(04): 363-369.

目的

制备同时携带IR780碘化物和硫酸长春新碱(VCR)的聚乳酸-羟基乙酸(PLGA)靶向纳米粒(IR780-VPN),并观察其在体外对肾母细胞瘤(SK-NEP1)的靶向作用及抗肾母细胞瘤增殖效率。

方法

制备IR780-VPN,检测其基本理化特性,培养SK-NEP1细胞作为体外肿瘤细胞模型,研究IR780-VPN的体外靶向性,观察以下6组的体外抗SK-NEP1细胞增殖效率:A组,PBS(对照组);B组,游离VCR;C组,空白纳米粒(PN);D组,载VCR纳米粒(VPN);E组,载IR780纳米粒(IR780-PN);F组,IR780-VPN。

结果

制备出的IR780-VPN平均粒径为(290.82±3.22)nm,粒径的分散指数(PDI)为0.024,平均Zeta电位为(1.16±0.87)mV。用细胞膜绿色荧光探针染色后于倒置荧光显微镜下观察,IR780-VPN大小均匀、形态规则,无聚集、粘连;透射电镜下观察IR780-VPN为球形或类球形,表面光滑,粒径分布均匀。其平均包封率为72.80%,平均载药量为2.80%,平均连靶率为91.30%。体外寻靶实验中可见SK-NEP1细胞表面有大量的IR780-VPN聚集。体外抗SK-NEP1细胞增殖实验证实,在相同药物质量浓度条件下,IR780-VPN组较VCR、VPN组的体外抗肿瘤细胞增殖效率高(P均<0.001),且游离VCR、VPN、IR780-VPN对SK-NEP1细胞增殖的抑制率具有浓度依赖性,药物质量浓度越大,对细胞的抑制作用越强(F=13254.105、54354.510、1370.059,P均<0.001);而随着药物质量浓度增加,PN、IR780-PN组的细胞增殖抑制率差异均无统计学意义(P均>0.05),PBS(对照组)对SK-NEP1细胞增殖的抑制率为(2.83±0.32)%。

结论

本实验成功制备了性质稳定的靶向IR780-VPN,对肾母细胞瘤细胞有良好的的靶向性,并提高了体外抗肾母细胞瘤增殖效率,为体内的肿瘤分子靶向研究提供了实验基础。

Objective

To prepare IR780 and vincristine (VCR)-loaded poly(lactic-co-glycolic acid)(PLGA) nanoparticles (IR780-VPN) and verify their specific targeting ability and anti-proliferative efficiency in vitro.

Methods

IR780-VPN were prepared to detect their basic physical and chemical characteristics. SK-NEP1 cells were used as a tumor cell model to verify the specific targeting ability and the anti-proliferative efficiency of IR780-VPN. SK-NEP1 cells were divided into six groups: group A: PBS; group B: free VCR; group C: PLGA nanoparticles; group D: VCR-PLGA nanoparticles; group E: IR780-PLGA nanoparticles; group F: IR780-VPN.

Results

The average particle size of IR780-VPN was (290.82±3.22) nm, the particle dispersion index (PDI) was 0.024, and the average zeta potential of IR780-VPN was (1.16±0.87) mV. IR780-VPN showed stable physical and chemical properties, and they were spherical, uniform in size, and regular in shape, without aggregation oradhesion under a microscope. The morphology of IR780-VPN was spherical or quasi-spherical with a smooth surface, and the particle size distribution was uniform. The average encapsulation efficiency of IR780-VCR-PLGA nanoparticles was about 72.80%, the average loading efficiency was 2.80%, and the specific targeting efficiency was 91.30%. Many IR780-VPN were observed to target tumor cells in vitro. The cytotoxicity was the highest in group F when compared with group B and group D at the same concentration (P<0.05), and cytotoxicity was concentration-dependent in group B, group D, and group F: the higher the drug concentration, the stronger the cytotoxicity (F=13254.105, 54354.510, and 1370.059, P<0.05). There was no significant difference in group C and group E with the increase of drug concentration (P>0.05). The rate of reduced cell proliferation in group A was (2.83±0.32)%.

Conclusion

IR780-VPN with stable properties have been successfully prepared, which can specifically target tumor cells and have improved anti-proliferative efficiency in vitro.

图1 携带IR780碘化物和硫酸长春新碱的聚乳酸-羟基乙酸纳米粒(IR780-VPN)粒径图
图2 携带IR780碘化物和硫酸长春新碱的聚乳酸-羟基乙酸纳米粒(IR780-VPN)的物理形态。图a为倒置荧光显微镜下观(DiO染色×100),可见IR780-VPN大小均匀、形态规则,无聚集;图b为透射电子显微镜下观(×20000),可见IR780-VPN表面光滑,为球形或者类球形
图3 硫酸长春新碱(VCR) PBS标准曲线及携带IR780碘化物和VCR的聚乳酸-羟基乙酸纳米粒(IR780-VPN)体外释放曲线。图a为VCR PBS标准曲线及回归方程式;图b为将1、2、4、8、12、24、41、150 h的累积释放液测得的吸光度,带入上述标准曲线回归方程计算累积释放率,绘制出IR780-VPN释药曲线图
图4 携带IR780碘化物和硫酸长春新碱的聚乳酸-羟基乙酸纳米粒(IR780-VPN)与未包载IR780的VPN激光共聚焦显微镜下观(蓝色为经DAPI染色的细胞核;红色为经DiI染色的IR780-VPN ×400)。图a为未包载IR780的VPN与SK-NEP1细胞的结合情况,可见细胞周围罕有VPN聚集;图b为IR780-VPN与SK-NEP1细胞的结合情况,可见细胞周围大量IR780-VPN聚集
表1 不同药物浓度的PN和IR780-PN溶液对SK-NEP1细胞增殖的抑制率(±s
表2 不同药物浓度的VCR、VPN和IR780-VPN溶液对SK-NEP1细胞增殖的抑制率(±s
1
Rathod SG, Garje MU, Sakthivel V, et al. Teratoid Wilms′ tumor of kidney with neural tissue predominant: Case report with review of literature [J]. J Family Med Prim Care, 2019, 8(10): 3447-3449.
2
Gidding CE, Kellie SJ, Kamps WA, et al. Vincristine revisited [J]. Crit Rev Oncol Hematol, 1999, 29(3): 267-287.
3
Zhao YZ, Lin Q, Wong HL, et al. Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD enhanced delivery [J]. J Control Release, 2016, 224: 112-125.
4
Zhao H, Wu M, Zhu L, et al. Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma [J]. Theranostics, 2018, 8(7): 1892-1910.
5
Haque S, Boyd BJ, McIntosh MP, et al. Suggested Procedures for the Reproducible Synthesis of Poly(d,l-lactide-co-glycolide) Nanoparticles Using the Emulsification Solvent Diffusion Platform [J]. Curr Nanosci, 2018, 14(5): 448-453.
6
Güvener N, Appold L, de Lorenzi F, et al. Recent advances in ultrasound-based diagnosis and therapy with micro-and nanometer-sized formulations [J]. Methods, 2017, 130: 4-13.
7
Senior R, Becher H, Monaghan M, et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography [J]. Eur J Echocardiogr, 2009, 10(2): 194-212.
8
Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery [J]. Adv Drug Deliv Rev, 2008, 60(10): 1153-1166.
9
Xing L, Shi Q, Zheng K, et al. Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer [J]. Theranostics, 2016, 6(10): 1573-1587.
10
Zhou Y, Gu H, Xu Y, et al. Targeted antiangiogenesis gene therapy using targeted cationic microbubbles conjugated with CD105 antibody compared with untargeted cationic and neutral microbubbles [J]. Theranostics, 2015, 5(4): 399-417.
11
Mozafari M, Shimoda M, Urbanska AM, et al. Ultrasound-targeted microbubble destruction: toward a new strategy for diabetes treatment [J]. Drug Discov Today, 2016, 21(4): 540-543.
12
Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment [J]. Proc Natl Acad Sci USA, 1998, 95(8): 4607-4612.
13
Min HS, You DG, Son S, et al. Echogenic Glycol Chitosan Nanoparticles for Ultrasound-Triggered Cancer Theranostics [J]. Theranostics, 2015, 5(12): 1402-1418.
14
Liu J, Shang T, Wang F, et al. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging [J]. Int J Nanomedicine, 2017, 12: 911-923.
15
Tokudome Y, Oku N, Doi K, et al. Antitumor activity of vincristine encapsulated in glucuronide-modified long-circulating liposomes in mice bearing Meth A sarcoma [J]. Biochim Biophys Acta, 1996, 1279(1): 70-74.
16
Cao LB, Zeng S, Zhao W. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers [J]. Nanoscale Res Lett, 2016, 11(1): 305.
17
Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective [J]. J Control Release, 2012, 161(2): 152-163.
18
Zhang K, Li P, He Y, et al. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment [J]. Biomaterials, 2016, 99: 34-46.
19
Zhang K, Xu H, Jia X, et al. Ultrasound-Triggered Nitric Oxide Release Platform Based on Energy Transformation for Targeted Inhibition of Pancreatic Tumor [J]. ACS Nano, 2016, 10(12): 10816-10828.
20
Jiang T, Zhang Z, Zhang Y, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery [J]. Biomaterials, 2012, 33(36): 9246-9258.
21
Wang Y, Liu T, Zhang E, et al. Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells [J]. Biomaterials, 2014, 35(13): 4116-4124.
22
Alves CG, Lima-Sousa R, de Melo-Diogo D, et al. IR780 based nanomaterials for cancer imaging and photothermal, photodynamic and combinatorial therapies [J]. Int J Pharm, 2018, 542(1-2): 164-175.
[1] 程慧, 李妍雨, 张蓓, 成杰, 张艳玲. 微小RNA-195靶向趋化因子5抑制滋养细胞增殖、迁移和侵袭及其机制研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 165-174.
[2] 孙佳辰, 宋垚垚, 申传安, 赵虹晴, 孙天骏. 表皮和表皮干细胞衰老的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 531-534.
[3] 江振剑, 蒋明, 黄大莉. TK1、Ki67蛋白在分化型甲状腺癌组织中的表达及预后价值研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 623-626.
[4] 石浩伟, 郝少龙, 纪宇, 孙浩, 聂芳, 胡阳, 李泽乾, 韩威. 长链非编码RNA-BANCR在胰腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2022, 16(05): 554-559.
[5] 雷震, 郭正辉, 唐晨, 彭圣萌, 任艳婷, 吴宛桦, 周杰, 陈勇明, 李凌峰, 黄海, 赖义明. ASF1B通过调控P53相关信号通路促进前列腺癌迁移和增殖的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 262-269.
[6] 李芬, 黄文娟, 朱乐攀. 色素上皮因子表达对肺癌细胞增殖及迁移能力的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 246-248.
[7] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[8] 梁芳, 刘广申, 徐艳. LncRNA AC130710通过miR-129-5P/WNT4轴促进子宫内膜癌细胞增殖和上皮间质转化[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 206-214.
[9] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[10] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[11] 汤永昌, 袁峰, 梁豪, 钟昭众, 熊志勇, 曹明波, 任昱朋, 李宇轩, 姚志成, 邓美海. HBx对HBV相关性肝癌增殖和迁移能力的影响及其机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(02): 198-202.
[12] 杨翠萍, 杨晓金, 全旭, 谢玲, 吴云林, 陈平. 肝细胞核因子-1α基因突变协同腺瘤样结肠息肉病基因突变对家族性腺瘤性息肉病细胞增殖的影响[J]. 中华消化病与影像杂志(电子版), 2022, 12(04): 228-231.
[13] 张懿炜, 胡亚欣, 出良钊, 严昭, 曾茜, 蒲茜. CREB3通过下调FAK磷酸化水平抑制胶质瘤细胞增殖及侵袭转移的体外实验研究[J]. 中华临床医师杂志(电子版), 2023, 17(02): 202-209.
[14] 郭德华, 贺迎坤, 白卫星, 何艳艳, 李天晓. 脑动静脉畸形部分栓塞术后血管组织增殖与凋亡的变化[J]. 中华介入放射学电子杂志, 2022, 10(02): 152-157.
[15] 刘育昕, 王子晗, 张艺馨, 栾永婕, 孟凯. 肾母细胞瘤基因1在卵巢疾病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2023, 11(03): 178-183.
阅读次数
全文


摘要