切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (02) : 216 -219. doi: 10.3877/cma.j.issn.1672-6448.2021.02.017

所属专题: 文献

综述

人工智能在超声心动图中的应用现状及进展
刘梦怡1, 吴伟春1,()   
  1. 1. 100037 国家心血管病中心 中国医学科学院阜外医院超声影像中心
  • 收稿日期:2020-03-24 出版日期:2021-02-01
  • 通信作者: 吴伟春

Application situation and progress of artificial intelligence in echocardiography

Mengyi Liu1, Weichun Wu1()   

  • Received:2020-03-24 Published:2021-02-01
  • Corresponding author: Weichun Wu
引用本文:

刘梦怡, 吴伟春. 人工智能在超声心动图中的应用现状及进展[J]. 中华医学超声杂志(电子版), 2021, 18(02): 216-219.

Mengyi Liu, Weichun Wu. Application situation and progress of artificial intelligence in echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(02): 216-219.

1
Hamet P, Tremblay J. Artificial intelligence in medicine[J]. Metabolism, 2017, 69: S36-S40.
2
Seetharam K, Kagiyama N, Sengupta PP. Application of mobile health, telemedicine and artificial intelligence to echocardiography[J]. Echo Res Pract, 2019, 6(2): R41-R52.
3
Alsharqi M, Woodward WJ, Mumith JA, et al. Artificial intelligence and echocardiography[J]. Echo Res Pract, 2018, 5(4): R115-R125.
4
Johnson KW, Soto JT, Glicksberg BS, et al. Artificial intelligence in cardiology[J]. J Am Coll Cardiol, 2018, 71(23): 2668-2679.
5
Krittanawong C, Tunhasiriwet A, Zhang H, et al. Deep learning with unsupervised feature in echocardiographic imaging[J]. J Am Coll Cardiol, 2017, 69(16): 2100-2101.
6
Gandhi S, Mosleh W, Shen J, et al. Automation, machine learning, and artificial intelligence in echocardiography: a brave new world[J]. Echocardiography, 2018, 35(9): 1402-1418.
7
Lee JG, Jun S, Cho YW, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4): 570-584.
8
American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association; American Society of Nuclear Cardiology, et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Society of Echocardiography, American Heart Association, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Critical Care Medicine, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance American College of Chest Physicians[J]. J Am Soc Echocardiogr, 2011, 24(3): 229-267.
9
Popescu BA, Andrade MJ, Badano LP, et al. European association of echocardiography recommendations for training, competence, and quality improvement in echocardiography[J]. Eur J Echocardiogr, 2009, 10(8): 893-905.
10
Østvik A, Smistad E, Aase SA, et al. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks[J]. Ultrasound Med Biol, 2019, 45(2): 374-384.
11
Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning[J]. NPJ Digit Med, 2018, 1: 6.
12
Zhuang X, Shen J. Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI[J]. Med Image Anal, 2016, 31: 77-87.
13
Dong S, Luo G, Wang K, et al. A combined fully convolutional networks and deformable model for automatic left ventricle segmentation based on 3D echocardiography[J]. Biomed Res Int, 2018, 2018: 5682365.
14
Jafari MH, Girgis H, van Woudenberg N, et al. Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training[J]. Int J Comput Assist Radiol Surg, 2019, 14(6): 1027-1037.
15
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice[J]. Circulation, 2018, 138(16): 1623-1635.
16
Leclerc S, Smistad E, Pedrosa J, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography[J]. IEEE Trans Med Imaging, 2019, 38(9): 2198-2210.
17
Yu L, Guo Y, Wang Y, et al. Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks[J]. IEEE Trans Biomed Eng, 2017, 64(8): 1886-1895.
18
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 233-270.
19
Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology[J]. J Am Soc Echocardiogr, 2005, 18(12): 1440-1463.
20
Tamborini G, Piazzese C, Lang RM, et al. Feasibility and accuracy of automated software for transthoracic three-dimensional left ventricular volume and function analysis: comparisons with two-dimensional echocardiography, three-dimensional transthoracic manual method, and cardiac magnetic resonance imaging[J]. J Am Soc Echocardiogr, 2017, 30(11): 1049-1058.
21
Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm[J]. JACC Cardiovasc Imaging, 2016, 9(7): 769-782.
22
Levy F, Dan SE, Iacuzio L, et al. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: comparison with 3 Tesla cardiac magnetic resonance[J]. Arch Cardiovasc Dis, 2017, 110(11): 580-589.
23
Omar HA, Domingos JS, Patra A, et al. Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) [C]. Washington DC, 2018.
24
Tabassian M, Sunderji I, Erdei T, et al. Diagnosis of heart failure with preserved ejection fraction: machine learning of spatiotemporal variations in left ventricular deformation[J]. J Am Soc Echocardiogr, 2018, 31(12): 1272-1284.
25
Jin C, Salgo IS, Schneider RJ, et al. Using anatomic intelligence to localize mitral valve prolapse on three-dimensional echocardiography[J]. J Am Soc Echocardiogr, 2016, 29(10): 938-945.
26
Thalappillil R, Datta P, Datta S, et al. Artificial intelligence for the measurement of the aortic valve annulus[J]. J Cardiothorac Vasc Anesth, 2020, 34(1): 65-71.
27
Jeganathan J, Knio Z, Amador Y, et al. Artificial intelligence in mitral valve analysis[J]. Ann Card Anaesth, 2017, 20(2): 129-134.
28
Aquila I, Fernandez-Golfin C, Rincon LM, et al. Fully automated software for mitral annulus evaluation in chronic mitral regurgitation by 3-dimensional transesophageal echocardiography[J]. Medicine (Baltimore), 2016, 95(49): e5387.
29
Narula S, Shameer K, Salem OA, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol, 2016, 68(21): 2287-2295.
30
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy[J]. Circ Cardiovasc Imaging, 2016, 9(6): e4330.
31
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577.
32
罗晓, 李安华. 人工智能在乳腺癌诊治中的应用与思考[J/CD]. 中华医学超声杂志(电子版), 2019, 16(4): 247-251.
No related articles found!
阅读次数
全文


摘要