切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (02) : 176 -181. doi: 10.3877/cma.j.issn.1672-6448.2022.02.014

基础研究

模拟甲状腺囊实性结节囊性成分射频和微波消融的离体实验研究
赵丹1, 赵齐羽2, 王彩芬1, 蒋天安2,()   
  1. 1. 310003 浙江省杭州市红十字会医院超声科
    2. 310003 杭州,浙江大学医学院附属第一医院超声科
  • 收稿日期:2021-05-09 出版日期:2022-02-01
  • 通信作者: 蒋天安
  • 基金资助:
    国家重大科研仪器研制项目(82027803); 浙江省数理医学学会联合基金(LSY19H180015); 浙江省基础公益研究计划(LGF20H180003)

In vitro radiofrequency and microwave ablation of cystic component in cystic-solid nodules of the thyroid

Dan Zhao1, Qiyu Zhao2, Caifen Wang1, Tian'an Jiang2,()   

  1. 1. Department of Ultrasonography, Hangzhou Red cross Hospital, Hangzhou 310003, China
    2. Department of Ultrasonography, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
  • Received:2021-05-09 Published:2022-02-01
  • Corresponding author: Tian'an Jiang
引用本文:

赵丹, 赵齐羽, 王彩芬, 蒋天安. 模拟甲状腺囊实性结节囊性成分射频和微波消融的离体实验研究[J]. 中华医学超声杂志(电子版), 2022, 19(02): 176-181.

Dan Zhao, Qiyu Zhao, Caifen Wang, Tian'an Jiang. In vitro radiofrequency and microwave ablation of cystic component in cystic-solid nodules of the thyroid[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(02): 176-181.

目的

探讨甲状腺囊实性结节射频和微波消融的可行性及效能。

方法

使用目前常用的热消融方式(射频和微波)对甲状腺囊实性结节囊性成分的模拟液体(蒸馏水、生理盐水、血液、肝囊肿穿刺液和甲状腺囊实性结节穿刺液)进行消融。作用功率为目前临床常用的热消融功率(35 W和50 W),每30 s记录温度值,连续监测10 min,绘制时间温度曲线。观察消融针针尖情况,记录针尖液体固化大小、形态及内部结构特点,必要时送病理检查。比较相同功率消融达到目标温度(60 ℃)的时间,并使用方差分析比较相同功率的射频和微波消融的热效能差异。

结果

蒸馏水仅能进行微波消融,而无法进行射频消融。35 W射频消融在生理盐水、肝囊肿穿刺液中比微波消融较早达到消融目标温度[(171.4±3.9)s vs(343.6±5.7)s、(170.2±4.8)s vs(444.5±7.2)s],时间温度曲线上具有较好的热效能(F=228.311、193.632,P均<0.001);50 W射频消融在肝囊肿穿刺液中比微波消融较早达到消融目标温度[(127.3±3.1)s vs(165.7±3.4)s],时间温度曲线上具有较好的热效能(F=47.429,P<0.001);但射频消融在血液和甲状腺囊实性结节穿刺液中无法达到消融目标温度。而50 W微波消融能在所有模拟液体中达到消融目标温度,且在血液和甲状腺囊实性结节穿刺液中的热效能明显优于射频消融(F=47.429、22.859,P均<0.001)。

结论

微波消融能对各甲状腺囊实性结节囊性成分的模拟液体进行消融,且性能相对稳定。射频消融热效能较高,但对蒸馏水无法消融,对血液和甲状腺囊实性结节穿刺液因针尖容易形成积碳而效果不佳。

Objective

To evaluate the feasibility of ablating the cystic component of cystic-solid nodules of the thyroid (CSNT) using radiofrequency ablation (RFA) and microwave ablation (MWA) in vitro.

Methods

The fluid simulation of CSNT cystic components in the body, like distilled water, normal saline, blood, puncture fluid of liver cyst, and the puncture fluid of CSNT, were ablated with the currently commonly used thermal ablation instruments. RFA and MWA were utilized in this study, and the ablation output power was 35 W and 50 W, respectively, which were commonly used in clinical practice. The temperature value was recorded every 30 seconds, and continuously for 10 minutes. The time temperature curve (TTC) was drawn for every test. The tip of the ablation needle was observed after the ablation, and the size, shape, and internal structure of the solidification around the needle tip were recorded. Pathological examination of the solidification around the needle tip was performed if necessary. The time of RFA and MWA to reach the target temperature (60 ℃) with the same power was compared, and the TTC was analyzed by variance analysis.

Results

Distilled water can only be ablated by MWA, but not by RFA. The target temperature of RFA in normal saline and liver cyst puncture fluid was reached earlier than that of MWA [(171.4±3.9) s vs (343.6±5.7) s, F=228.311, P<0.001; (170.2±4.8) s vs (444.5±7.2) s, F=193.632, P<0.001] at the output power of 35 W, while at the power of 50 W, MWA had better thermal efficiency in TTC [(127.3±3.1) s vs (165.7±3.4) s, F=47.429, P<0.001). In contrast, the target temperature in blood and the fluid punctured from CSNT was not reached. MWA at 50 W achieved the target ablation temperature in all the simulated liquids, and the thermal efficiency in blood and the fluid punctured from CSNT were obviously better than that of RFA (F=47.429 and 22.859, both P<0.001).

Conclusion

MWA can be used to ablate the simulated fluid of CSNT, and the performance is relatively stable. RFA has a high thermal efficiency, but it fails to ablate distilled water. RFA has a poor effect on blood and the fluid punctured from CSNT because the tip of the needle is easy to form carbon deposit.

图1 甲状腺囊实性结节囊性成分射频、微波消融离体实验的实验装置。图a为实验装置设计图。图b为实验装置实物图。图c为正在进行操作的实验装置
图2 液体射频、微波消融实验技术路线图
图3 生理盐水体外消融的时间温度曲线(F=228.311,aP<0.001)
图4 肝囊肿穿刺液体外消融的时间温度曲线(F=193.632,aP<0.001;F=227.650,bP<0.001)
图5 血液消融后针尖凝固物质及病理检查镜下图。图a为血液50 W微波消融针尖部所形成的锥形固体(箭头所示)。图b为血液射频消融针尖形成的固体(箭头所示)。图c为血液射频消融后针尖物质镜下图(HE×100)。
图6 血液体外消融的时间温度曲线(F=311.545,aP<0.001;F=47.429,bP<0.001;F=382.302,cP<0.001)
图7 甲状腺囊实性结节穿刺液消融后针尖凝固物质及病理检查镜下图。图a为甲状腺囊实性结节穿刺液射频消融针尖形成的固体(箭头所示)。图b为甲状腺囊实性结节穿刺液射频消融后针尖物质镜下图(HE×100)
图8 甲状腺囊实性结节穿刺液体外消融的时间温度曲线(F=3.879,aP=0.064;F=22.859,bP<0.001)
1
Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma [J]. Thyroid, 1999, 9(5): 421-427.
2
Yasuda K, Ozaki O, Sugino K, et al. Treatment of cystic lesions of the thyroid by ethanol instillation [J]. World J Surg, 1992, 16(5): 958-961.
3
Jegerlehner S, Bulliard JL, Aujesky D, et al. Overdiagnosis and overtreatment of thyroid cancer: a population-based temporal trend study [J]. PLoS One, 2017, 12(6): e0179387.
4
Jung KW, Won YJ, Oh CM, et al. Prediction of cancer incidence and mortality in Korea, 2017 [J]. Cancer Res Treat, 2017, 49(2): 306-312.
5
Deen MH, Burke KM, Janitz A, et al. Cancers of the thyroid: overview and statistics in the United States and Oklahoma [J]. J Okla State Med Assoc, 2016, 109(7-8): 333-338.
6
Cui T, Jin C, Jiao D, et al. Safety and efficacy of microwave ablation for benign thyroid nodules and papillary thyroid microcarcinomas: a systematic review and meta-analysis [J]. Eur J Radiol, 2019, 118: 58-64.
7
Park HS, Yim Y, Baek JH, et al. Ethanol ablation as a treatment strategy for benign cystic thyroid nodules: a comparison of the ethanol retention and aspiration techniques [J]. Ultrasonography, 2019, 38(2): 166-171.
8
Feng B, Liang P, Cheng Z, et al. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies [J]. Eur J Endocrinol, 2012, 166(6): 1031-1037.
9
Lim HK, Lee JH, Ha EJ, et al. Radiofrequency ablation of benign non- functioning thyroid nodules: 4-year follow-up results for 111 patients [J]. Eur Radiol, 2013, 23(4): 1044-1049.
10
Kim YJ, Baek JH, Ha EJ, et al. Cystic versus predominantly cystic thyroid nodules: efficacy of ethanol ablation and analysis of related factors [J]. Eur Radiol, 2012, 22(7): 1573-1578.
11
Spiezia S, Vitale G, Di Somma C, et al. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter [J]. Thyroid, 2003, 13(10): 941-947.
12
Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules [J]. J Endocrinol Invest, 2010, 33(5 Suppl): 1-50.
13
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
14
龙淼云, 朱玥, 谭浪平, 等. 微波消融治疗直径大于4 cm的混合型良性甲状腺结节疗效分析 [J/CD]. 中华普通外科学文献(电子版), 2020, 14(1): 50-52.
15
Ivarsson KM, Akaberi S, Isaksson E, et al. The effect of parathyroidectomy on patient survival in secondary hyperparathyroidism [J]. Nephrol Dial Transplant, 2015, 30(12): 2027-2033.
16
Goldberg SN. Radiofrequency tumor ablation: principles and techniques [J]. Eur J Ultrasound, 2001, 13(2): 129-147.
17
Dodd GD3rd, Dodd NA, Lanctot AC, et al. Effect of variation of portal venous blood flow on radiofrequency and microwave ablations in a blood-perfused bovine liver model [J]. Radiology, 2013, 267(1): 129-36.
18
Liu YJ, Qian LX, Liu D, et al. Ultrasound-guided microwave ablation in the treatment of benign thyroid nodules in 435 patients [J]. Exp Biol Med (Maywood), 2017, 242(15): 1515-1523.
19
Yoon HM, Baek JH, Lee JH, et al. Combination therapy consisting of ethanol and radiofrequency ablation for predominantly cystic thyroid nodules [J]. AJNR Am J Neuroradiol, 2014, 35(3): 582-586.
[1] 涂鹏, 张晓航, 董虹美, 陈功立, 冉素真. 超声多普勒评估在双胎输血综合征射频消融减胎术后的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 492-497.
[2] 阎琳, 兰雨, 谢芳, 罗渝昆. 超声引导下射频消融治疗甲状腺微小乳头状癌的长期大样本随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(02): 227-231.
[3] 王兴, 张峰伟. 腹腔镜肝切除联合断面射频消融治疗伴微血管侵犯肝细胞癌的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 580-583.
[4] 宋铭杰, 韩青雷, 李佳隆, 邵英梅. 内镜下晚期肝外胆管恶性肿瘤消融治疗研究现况[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 340-342.
[5] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[6] 蒙姣姣, 胡刚, 欧阳涣堃. 肺癌术前淋巴结转移及MWA手术效果预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 547-549.
[7] 张海涛, 贾哲, 马超, 张其坤, 武聚山, 郭庆良, 曾道炳, 栗光明, 王孟龙. 手术切除与射频消融治疗血管周围型单发小肝癌临床疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 523-527.
[8] 孟泓宇, 卢逸, 曹彦龙, 戴操, 杨佳伟, 林楠, 徐见亮. 基于PSM比较TACE联合射频消融与单纯射频消融治疗小肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 417-421.
[9] 于雁宾, 党受琴, 庄云龙, 许世友, 孟令展, 俞鹏, 高远, 李虎, 曹李, 朱震宇. 35例肝血管平滑肌脂肪瘤患者诊治及疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 327-330.
[10] 李卓群, 任冯刚, 王荣峰, 张东, 耿智敏, 吕毅, 仵正. 胆管癌局部治疗技术应用进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 153-156.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 张勇创, 李威, 满文玲, 杨坡. 超声引导下微波消融治疗下肢静脉曲张的疗效观察[J]. 中华介入放射学电子杂志, 2023, 11(03): 218-222,246.
[13] 毛媛媛, 殷曰帅, 宓兵, 胡效坤. CT引导下经皮穿刺肺腺癌微波消融后致巨大空洞一例[J]. 中华介入放射学电子杂志, 2023, 11(03): 287-288.
[14] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[15] 蒋子涵, 于丰源, 张宏达, 丁蕾, 米利杰, 唐闽. 2023年美国心律学年会心律失常领域最新临床研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(02): 125-128.
阅读次数
全文


摘要