切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (02) : 176 -181. doi: 10.3877/cma.j.issn.1672-6448.2022.02.014

基础研究

模拟甲状腺囊实性结节囊性成分射频和微波消融的离体实验研究
赵丹1, 赵齐羽2, 王彩芬1, 蒋天安2,()   
  1. 1. 310003 浙江省杭州市红十字会医院超声科
    2. 310003 杭州,浙江大学医学院附属第一医院超声科
  • 收稿日期:2021-05-09 出版日期:2022-02-01
  • 通信作者: 蒋天安
  • 基金资助:
    国家重大科研仪器研制项目(82027803); 浙江省数理医学学会联合基金(LSY19H180015); 浙江省基础公益研究计划(LGF20H180003)

In vitro radiofrequency and microwave ablation of cystic component in cystic-solid nodules of the thyroid

Dan Zhao1, Qiyu Zhao2, Caifen Wang1, Tian'an Jiang2,()   

  1. 1. Department of Ultrasonography, Hangzhou Red cross Hospital, Hangzhou 310003, China
    2. Department of Ultrasonography, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
  • Received:2021-05-09 Published:2022-02-01
  • Corresponding author: Tian'an Jiang
引用本文:

赵丹, 赵齐羽, 王彩芬, 蒋天安. 模拟甲状腺囊实性结节囊性成分射频和微波消融的离体实验研究[J/OL]. 中华医学超声杂志(电子版), 2022, 19(02): 176-181.

Dan Zhao, Qiyu Zhao, Caifen Wang, Tian'an Jiang. In vitro radiofrequency and microwave ablation of cystic component in cystic-solid nodules of the thyroid[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(02): 176-181.

目的

探讨甲状腺囊实性结节射频和微波消融的可行性及效能。

方法

使用目前常用的热消融方式(射频和微波)对甲状腺囊实性结节囊性成分的模拟液体(蒸馏水、生理盐水、血液、肝囊肿穿刺液和甲状腺囊实性结节穿刺液)进行消融。作用功率为目前临床常用的热消融功率(35 W和50 W),每30 s记录温度值,连续监测10 min,绘制时间温度曲线。观察消融针针尖情况,记录针尖液体固化大小、形态及内部结构特点,必要时送病理检查。比较相同功率消融达到目标温度(60 ℃)的时间,并使用方差分析比较相同功率的射频和微波消融的热效能差异。

结果

蒸馏水仅能进行微波消融,而无法进行射频消融。35 W射频消融在生理盐水、肝囊肿穿刺液中比微波消融较早达到消融目标温度[(171.4±3.9)s vs(343.6±5.7)s、(170.2±4.8)s vs(444.5±7.2)s],时间温度曲线上具有较好的热效能(F=228.311、193.632,P均<0.001);50 W射频消融在肝囊肿穿刺液中比微波消融较早达到消融目标温度[(127.3±3.1)s vs(165.7±3.4)s],时间温度曲线上具有较好的热效能(F=47.429,P<0.001);但射频消融在血液和甲状腺囊实性结节穿刺液中无法达到消融目标温度。而50 W微波消融能在所有模拟液体中达到消融目标温度,且在血液和甲状腺囊实性结节穿刺液中的热效能明显优于射频消融(F=47.429、22.859,P均<0.001)。

结论

微波消融能对各甲状腺囊实性结节囊性成分的模拟液体进行消融,且性能相对稳定。射频消融热效能较高,但对蒸馏水无法消融,对血液和甲状腺囊实性结节穿刺液因针尖容易形成积碳而效果不佳。

Objective

To evaluate the feasibility of ablating the cystic component of cystic-solid nodules of the thyroid (CSNT) using radiofrequency ablation (RFA) and microwave ablation (MWA) in vitro.

Methods

The fluid simulation of CSNT cystic components in the body, like distilled water, normal saline, blood, puncture fluid of liver cyst, and the puncture fluid of CSNT, were ablated with the currently commonly used thermal ablation instruments. RFA and MWA were utilized in this study, and the ablation output power was 35 W and 50 W, respectively, which were commonly used in clinical practice. The temperature value was recorded every 30 seconds, and continuously for 10 minutes. The time temperature curve (TTC) was drawn for every test. The tip of the ablation needle was observed after the ablation, and the size, shape, and internal structure of the solidification around the needle tip were recorded. Pathological examination of the solidification around the needle tip was performed if necessary. The time of RFA and MWA to reach the target temperature (60 ℃) with the same power was compared, and the TTC was analyzed by variance analysis.

Results

Distilled water can only be ablated by MWA, but not by RFA. The target temperature of RFA in normal saline and liver cyst puncture fluid was reached earlier than that of MWA [(171.4±3.9) s vs (343.6±5.7) s, F=228.311, P<0.001; (170.2±4.8) s vs (444.5±7.2) s, F=193.632, P<0.001] at the output power of 35 W, while at the power of 50 W, MWA had better thermal efficiency in TTC [(127.3±3.1) s vs (165.7±3.4) s, F=47.429, P<0.001). In contrast, the target temperature in blood and the fluid punctured from CSNT was not reached. MWA at 50 W achieved the target ablation temperature in all the simulated liquids, and the thermal efficiency in blood and the fluid punctured from CSNT were obviously better than that of RFA (F=47.429 and 22.859, both P<0.001).

Conclusion

MWA can be used to ablate the simulated fluid of CSNT, and the performance is relatively stable. RFA has a high thermal efficiency, but it fails to ablate distilled water. RFA has a poor effect on blood and the fluid punctured from CSNT because the tip of the needle is easy to form carbon deposit.

图1 甲状腺囊实性结节囊性成分射频、微波消融离体实验的实验装置。图a为实验装置设计图。图b为实验装置实物图。图c为正在进行操作的实验装置
图2 液体射频、微波消融实验技术路线图
图3 生理盐水体外消融的时间温度曲线(F=228.311,aP<0.001)
图4 肝囊肿穿刺液体外消融的时间温度曲线(F=193.632,aP<0.001;F=227.650,bP<0.001)
图5 血液消融后针尖凝固物质及病理检查镜下图。图a为血液50 W微波消融针尖部所形成的锥形固体(箭头所示)。图b为血液射频消融针尖形成的固体(箭头所示)。图c为血液射频消融后针尖物质镜下图(HE×100)。
图6 血液体外消融的时间温度曲线(F=311.545,aP<0.001;F=47.429,bP<0.001;F=382.302,cP<0.001)
图7 甲状腺囊实性结节穿刺液消融后针尖凝固物质及病理检查镜下图。图a为甲状腺囊实性结节穿刺液射频消融针尖形成的固体(箭头所示)。图b为甲状腺囊实性结节穿刺液射频消融后针尖物质镜下图(HE×100)
图8 甲状腺囊实性结节穿刺液体外消融的时间温度曲线(F=3.879,aP=0.064;F=22.859,bP<0.001)
1
Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma [J]. Thyroid, 1999, 9(5): 421-427.
2
Yasuda K, Ozaki O, Sugino K, et al. Treatment of cystic lesions of the thyroid by ethanol instillation [J]. World J Surg, 1992, 16(5): 958-961.
3
Jegerlehner S, Bulliard JL, Aujesky D, et al. Overdiagnosis and overtreatment of thyroid cancer: a population-based temporal trend study [J]. PLoS One, 2017, 12(6): e0179387.
4
Jung KW, Won YJ, Oh CM, et al. Prediction of cancer incidence and mortality in Korea, 2017 [J]. Cancer Res Treat, 2017, 49(2): 306-312.
5
Deen MH, Burke KM, Janitz A, et al. Cancers of the thyroid: overview and statistics in the United States and Oklahoma [J]. J Okla State Med Assoc, 2016, 109(7-8): 333-338.
6
Cui T, Jin C, Jiao D, et al. Safety and efficacy of microwave ablation for benign thyroid nodules and papillary thyroid microcarcinomas: a systematic review and meta-analysis [J]. Eur J Radiol, 2019, 118: 58-64.
7
Park HS, Yim Y, Baek JH, et al. Ethanol ablation as a treatment strategy for benign cystic thyroid nodules: a comparison of the ethanol retention and aspiration techniques [J]. Ultrasonography, 2019, 38(2): 166-171.
8
Feng B, Liang P, Cheng Z, et al. Ultrasound-guided percutaneous microwave ablation of benign thyroid nodules: experimental and clinical studies [J]. Eur J Endocrinol, 2012, 166(6): 1031-1037.
9
Lim HK, Lee JH, Ha EJ, et al. Radiofrequency ablation of benign non- functioning thyroid nodules: 4-year follow-up results for 111 patients [J]. Eur Radiol, 2013, 23(4): 1044-1049.
10
Kim YJ, Baek JH, Ha EJ, et al. Cystic versus predominantly cystic thyroid nodules: efficacy of ethanol ablation and analysis of related factors [J]. Eur Radiol, 2012, 22(7): 1573-1578.
11
Spiezia S, Vitale G, Di Somma C, et al. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter [J]. Thyroid, 2003, 13(10): 941-947.
12
Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules [J]. J Endocrinol Invest, 2010, 33(5 Suppl): 1-50.
13
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
14
龙淼云, 朱玥, 谭浪平, 等. 微波消融治疗直径大于4 cm的混合型良性甲状腺结节疗效分析 [J/CD]. 中华普通外科学文献(电子版), 2020, 14(1): 50-52.
15
Ivarsson KM, Akaberi S, Isaksson E, et al. The effect of parathyroidectomy on patient survival in secondary hyperparathyroidism [J]. Nephrol Dial Transplant, 2015, 30(12): 2027-2033.
16
Goldberg SN. Radiofrequency tumor ablation: principles and techniques [J]. Eur J Ultrasound, 2001, 13(2): 129-147.
17
Dodd GD3rd, Dodd NA, Lanctot AC, et al. Effect of variation of portal venous blood flow on radiofrequency and microwave ablations in a blood-perfused bovine liver model [J]. Radiology, 2013, 267(1): 129-36.
18
Liu YJ, Qian LX, Liu D, et al. Ultrasound-guided microwave ablation in the treatment of benign thyroid nodules in 435 patients [J]. Exp Biol Med (Maywood), 2017, 242(15): 1515-1523.
19
Yoon HM, Baek JH, Lee JH, et al. Combination therapy consisting of ethanol and radiofrequency ablation for predominantly cystic thyroid nodules [J]. AJNR Am J Neuroradiol, 2014, 35(3): 582-586.
[1] 诸佳玮, 陈强, 王辉阳, 蒋天安. 双极射频活检针在肝粗针活检止血的研发与初步应用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 69-74.
[2] 赵里汶, 贺需旗, 李凯. 虚拟导航辅助超声引导下经皮射频消融治疗直径≤2 cm肾上腺良性肿瘤的疗效研究[J/OL]. 中华医学超声杂志(电子版), 2023, 20(12): 1282-1286.
[3] 杨建波, 马欢, 黄小梅, 刘华柱. 结肠镜辅助下EMR、CSP和RFA术治疗直径<1cm结直肠息肉的疗效和安全性比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 76-79.
[4] 林巧, 周丽. RFA联合LAH术治疗原发性肝癌并门静脉癌栓的临床效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 521-524.
[5] 臧宇, 姚胜, 朱新勇, 戎世捧, 田智超. 低温等离子射频消融治疗腹壁疝术后补片感染的临床效果[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 687-692.
[6] 杨涛, 吕学祥, 李念, 王燕红, 余梦琳, Menglin Yu. 阵发性房颤射频消融术后肺静脉狭窄的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 814-817.
[7] 宋华传, 季鹏, 姚焕章, 王永帅, 张珅瑜, 宋瑞鹏, 王继洲. 腹腔镜肝切除术联合微波消融治疗多发性结直肠癌肝转移[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 222-226.
[8] 沈佳佳, 何经雄, 王芳, 江艺, 潘凡, 张小进. ICG荧光引导腹腔镜射频消融在合并严重大结节肝硬化小肝癌患者治疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 68-71.
[9] 莫鹏, 郭杏春, 梁秀娟, 王耀明. 超声引导与CT引导射频消融治疗肝细胞癌患者疗效及预后比较[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 151-154.
[10] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[11] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J/OL]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 罗汐, 田伟, 孙汉垚, 路尚于, 施海彬. 铁铜基纳米材料在肝癌微波增敏治疗中的应用效果[J/OL]. 中华介入放射学电子杂志, 2024, 12(01): 51-57.
[14] 陈轶维, 吴近近, 李奋, 孙彦隽, 郁夏风. 儿童左心耳起源房性心动过速镶嵌治疗一例[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 185-188.
[15] 王楠钧, 马燕, 李隆松, 牛晓彤, 刘圣圳, 毕雅维, 苏松, 柴宁莉, 令狐恩强. 不同年龄段胃低级别上皮内瘤变患者内镜下射频消融术的疗效对比分析[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(04): 238-242.
阅读次数
全文


摘要