切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (02) : 186 -189. doi: 10.3877/cma.j.issn.1672-6448.2022.02.016

综述

人工智能在超声心动图中的应用现状及展望
杨菲菲1, 王秋霜1, 何昆仑2,()   
  1. 1. 100048 北京,解放军总医院第四医学中心心内科
    2. 100048 北京,解放军总医院创新医学部大数据中心
  • 收稿日期:2020-09-07 出版日期:2022-02-01
  • 通信作者: 何昆仑
  • 基金资助:
    北京市自然科学基金(7202198)

Current status and future prospects of application of artificial intelligence in echocardiography

Feifei Yang1, Qiushuang Wang1, Kunlun He2()   

  • Received:2020-09-07 Published:2022-02-01
  • Corresponding author: Kunlun He
引用本文:

杨菲菲, 王秋霜, 何昆仑. 人工智能在超声心动图中的应用现状及展望[J]. 中华医学超声杂志(电子版), 2022, 19(02): 186-189.

Feifei Yang, Qiushuang Wang, Kunlun He. Current status and future prospects of application of artificial intelligence in echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(02): 186-189.

1
Sermesant M, Delingette H, Cochet H, et al. Applications of artificial intelligence in cardiovascular imaging [J]. Nat Rev Cardiol, 2021, 18(8): 600-609.
2
Yoon YE, Kim S, Chang HJ. Artificial intelligence and echocardiography [J]. J Cardiovasc Imaging, 2021, 29(3): 193-204.
3
Rajkomar A, Dean J, Kohane I. Machine learning in medicine [J]. N Engl J Med, 2019, 380(14): 1347-1358.
4
Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer [J]. Eur Heart J, 2019, 40(25): 2058-2073.
5
Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J]. Nat Med, 2019, 25(1): 65-69.
6
Rim B, Sung NJ, Min S, et al. Deep learning in physiological signal data: a survey [J]. Sensors (Basel), 2020, 20(4): 969.
7
Martin SS, van Assen M, Rapaka S,et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 524-526.
8
Kumamaru KK, Fujimoto S, Otsuka Y, et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography [J]. Eur Heart J Cardiovasc Imaging, 2020, 21(4): 437-445.
9
Zhang N, Yang G, Gao Z, et al. Deep learning for diagnosis of chronic myocardial infarction on non-enhanced cardiac cine MRI [J]. Radiology, 2019, 291(3): 606-617.
10
Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study [J]. JACC Cardiovasc Imaging, 2018, 11(11): 1654-1663.
11
Madani A, Ong JR, Tibrewal A, et al. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease [J]. NPJ Digit Med, 2018, 1: 59.
12
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice [J]. Circulation, 2018, 138(16): 1623-1635.
13
Kusunose K, Haga A, Abe T, et al. Utilization of artificial intelligence in echocardiography [J]. Circ J, 2019, 83(8): 1623-1629.
14
Knackstedt C, Bekkers SC, Schummers G, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study [J]. J Am Coll Cardiol, 2015, 66(13): 1456-1466.
15
Asch FM, Poilvert N, Abraham T, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert [J]. Circ Cardiovasc Imaging, 2019, 12(9): e009303.
16
Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance [J]. J Am Soc Echocardiogr, 2019, 32(8): 969-977.
17
Tabassian M, Alessandrini M, Herbots L, et al. Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification [J]. Int J Cardiovasc Imaging, 2017, 33(8): 1159-1167.
18
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.
19
Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos [J]. Comput Biol Med, 2016, 73: 47-55.
20
Cobey FC. Intelligent algorithms in perioperative echocardiography: a new era [J]. J Am Soc Echocardiogr, 2017, 30(10): A26-A27.
21
Thalappillil R, Datta P, Datta S, et al. Artificial intelligence for the measurement of the aortic valve annulus [J]. J Cardiothorac Vasc Anesth, 2020, 34(1): 65-71.
22
Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography [J]. J Am Coll Cardiol, 2016, 68(21): 2287-2295.
23
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy [J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330.
24
Tabassian M, Sunderji I, Erdei T, et al. Diagnosis of heart failure with preserved ejection fraction: machine learning of spatiotemporal variations in left ventricular deformation [J]. J Am Soc Echocardiogr, 2018, 31(12): 1272-1284.e9.
25
Cikes M, Sanchez-Martinez S, Claggett B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J]. Eur J Heart Fail, 2019, 21(1): 74-85.
26
Lancaster MC, Salem Omar AM, Narula S, et al. Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance [J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1149-1161.
27
Kwon JM, Kim KH, Jeon KH, et al. Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography [J]. Echocardiography, 2019, 36(2): 213-218.
28
王小亭, 刘大为, 于凯江, 等. 中国重症超声专家共识 [J]. 中华内科杂志, 2016, 55(11): 900-912.
29
Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol [J]. Chest, 2008, 134(1): 117-125.
30
Peng QY, Wang XT, Zhang LN, et al. Using echocardiography to guide the treatment of novel coronavirus pneumonia [J]. Crit Care, 2020, 24(1): 143.
31
Bataille B, Riu B, Ferre F, et al. Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU [J]. Chest, 2014, 146(6): 1586-1593.
No related articles found!
阅读次数
全文


摘要