1 |
Sermesant M, Delingette H, Cochet H, et al. Applications of artificial intelligence in cardiovascular imaging [J]. Nat Rev Cardiol, 2021, 18(8): 600-609.
|
2 |
Yoon YE, Kim S, Chang HJ. Artificial intelligence and echocardiography [J]. J Cardiovasc Imaging, 2021, 29(3): 193-204.
|
3 |
Rajkomar A, Dean J, Kohane I. Machine learning in medicine [J]. N Engl J Med, 2019, 380(14): 1347-1358.
|
4 |
Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer [J]. Eur Heart J, 2019, 40(25): 2058-2073.
|
5 |
Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J]. Nat Med, 2019, 25(1): 65-69.
|
6 |
Rim B, Sung NJ, Min S, et al. Deep learning in physiological signal data: a survey [J]. Sensors (Basel), 2020, 20(4): 969.
|
7 |
Martin SS, van Assen M, Rapaka S,et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 524-526.
|
8 |
Kumamaru KK, Fujimoto S, Otsuka Y, et al. Diagnostic accuracy of 3D deep-learning-based fully automated estimation of patient-level minimum fractional flow reserve from coronary computed tomography angiography [J]. Eur Heart J Cardiovasc Imaging, 2020, 21(4): 437-445.
|
9 |
Zhang N, Yang G, Gao Z, et al. Deep learning for diagnosis of chronic myocardial infarction on non-enhanced cardiac cine MRI [J]. Radiology, 2019, 291(3): 606-617.
|
10 |
Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study [J]. JACC Cardiovasc Imaging, 2018, 11(11): 1654-1663.
|
11 |
Madani A, Ong JR, Tibrewal A, et al. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease [J]. NPJ Digit Med, 2018, 1: 59.
|
12 |
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice [J]. Circulation, 2018, 138(16): 1623-1635.
|
13 |
Kusunose K, Haga A, Abe T, et al. Utilization of artificial intelligence in echocardiography [J]. Circ J, 2019, 83(8): 1623-1629.
|
14 |
Knackstedt C, Bekkers SC, Schummers G, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study [J]. J Am Coll Cardiol, 2015, 66(13): 1456-1466.
|
15 |
Asch FM, Poilvert N, Abraham T, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert [J]. Circ Cardiovasc Imaging, 2019, 12(9): e009303.
|
16 |
Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance [J]. J Am Soc Echocardiogr, 2019, 32(8): 969-977.
|
17 |
Tabassian M, Alessandrini M, Herbots L, et al. Machine learning of the spatio-temporal characteristics of echocardiographic deformation curves for infarct classification [J]. Int J Cardiovasc Imaging, 2017, 33(8): 1159-1167.
|
18 |
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.
|
19 |
Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos [J]. Comput Biol Med, 2016, 73: 47-55.
|
20 |
Cobey FC. Intelligent algorithms in perioperative echocardiography: a new era [J]. J Am Soc Echocardiogr, 2017, 30(10): A26-A27.
|
21 |
Thalappillil R, Datta P, Datta S, et al. Artificial intelligence for the measurement of the aortic valve annulus [J]. J Cardiothorac Vasc Anesth, 2020, 34(1): 65-71.
|
22 |
Narula S, Shameer K, Salem Omar AM, et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography [J]. J Am Coll Cardiol, 2016, 68(21): 2287-2295.
|
23 |
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy [J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330.
|
24 |
Tabassian M, Sunderji I, Erdei T, et al. Diagnosis of heart failure with preserved ejection fraction: machine learning of spatiotemporal variations in left ventricular deformation [J]. J Am Soc Echocardiogr, 2018, 31(12): 1272-1284.e9.
|
25 |
Cikes M, Sanchez-Martinez S, Claggett B, et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy [J]. Eur J Heart Fail, 2019, 21(1): 74-85.
|
26 |
Lancaster MC, Salem Omar AM, Narula S, et al. Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance [J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1149-1161.
|
27 |
Kwon JM, Kim KH, Jeon KH, et al. Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography [J]. Echocardiography, 2019, 36(2): 213-218.
|
28 |
王小亭, 刘大为, 于凯江, 等. 中国重症超声专家共识 [J]. 中华内科杂志, 2016, 55(11): 900-912.
|
29 |
Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol [J]. Chest, 2008, 134(1): 117-125.
|
30 |
Peng QY, Wang XT, Zhang LN, et al. Using echocardiography to guide the treatment of novel coronavirus pneumonia [J]. Crit Care, 2020, 24(1): 143.
|
31 |
Bataille B, Riu B, Ferre F, et al. Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU [J]. Chest, 2014, 146(6): 1586-1593.
|