切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (06) : 541 -547. doi: 10.3877/cma.j.issn.1672-6448.2022.06.009

肌肉骨骼超声影像学

健康人群四肢近端肌肉剪切波弹性成像测量的初步研究
唐远姣1, 刘伊铃2, 郭瑞倩1, 钟琳1, 邱逦1,()   
  1. 1. 610041 成都,四川大学华西医院超声医学科
    2. 610065 成都,四川大学望江医院超声科
  • 收稿日期:2021-06-27 出版日期:2022-06-01
  • 通信作者: 邱逦
  • 基金资助:
    国家自然科学基金项目(82001829,81971622)

Shear wave elastography measurement of proximal limb muscles in healthy people: a preliminary study

Yuanjiao Tang1, Yiling Liu2, Ruiqian Guo1, Lin Zhong1, Li Qiu1()   

  1. 1. Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
    2. Department of Ultrasound, Wangjiang Hospital of Sichuan University, Chengdu 610065, China
  • Received:2021-06-27 Published:2022-06-01
  • Corresponding author: Li Qiu
引用本文:

唐远姣, 刘伊铃, 郭瑞倩, 钟琳, 邱逦. 健康人群四肢近端肌肉剪切波弹性成像测量的初步研究[J/OL]. 中华医学超声杂志(电子版), 2022, 19(06): 541-547.

Yuanjiao Tang, Yiling Liu, Ruiqian Guo, Lin Zhong, Li Qiu. Shear wave elastography measurement of proximal limb muscles in healthy people: a preliminary study[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(06): 541-547.

目的

测量健康人群四肢近端肌肉剪切波速度,分析与其相关的因素。

方法

选取2019年1月至2020年12月在四川大学华西医院招募的健康志愿者88例,记录受检者的性别、年龄、体质量指数(BMI)及运动习惯。测量不同肌肉(三角肌、肱二头肌、股直肌、股外侧肌)左右两侧及相同肌肉不同断面、不同位置及不同体位的剪切波速度,并对不同性别、年龄、BMI及运动状态的肌肉剪切波速度进行比较。随机抽取20例受试者,计算三角肌及股直肌剪切波速度测量的观察者间及观察者内一致性。

结果

各肌肉纵断面剪切波速度左、右两侧比较,差异无统计学意义(P均>0.05)。各肌肉剪切波速度纵断面均大于横断面(P均<0.05)。肱二头肌伸直位纵断面,其剪切波速度肌腹外侧大于肌腹内侧(P均<0.05)。肱二头肌剪切波速度伸直位均大于屈曲位(P均<0.05)。三角肌、肱二头肌剪切波速度男性高于女性(P均<0.05)。股外侧肌剪切波速度18~49岁组高于50~70岁组(P<0.05)。肱二头肌剪切波速度BMI<18.5 kg/m2组及18.5 kg/m2≤BMI<24 kg/m2组均高于BMI≥24 kg/m2组,差异均有统计学意义(P均<0.05)。三角肌剪切波速度规律运动者高于少运动者,差异有统计学意义(P<0.05)。三角肌及股直肌的剪切波速度观察者内及观察者间一致性均为良好或优秀(ICC均>0.88)。

结论

剪切波弹性成像(SWE)能够用于定量测量健康人群肌肉的硬度值,肌肉的断面和部位及受检者的体位、性别、年龄、BMI和运动习惯为与其相关的因素,研究结果为特发性炎性肌病的进一步研究提供了依据。

Objective

To measure the shear wave velocities of proximal limb muscles in healthy people and analyze the related factors.

Methods

A total of 88 healthy volunteers recruited from West China Hospital of Sichuan University from 2019 to 2020 were selected, and their gender, age, body mass index (BMI), and exercise habits were recorded. The shear wave velocities of different muscles (triangle, biceps brachialis, rectus femoris, and lateral femoral muscle) on both the left and right sides and in different sections, different positions, and different body positions were measured, and the shear wave velocities of the muscles between different genders, ages, exercise status, and BMIs were compared. Twenty subjects were randomly selected to calculate the inter-observer and intra-observer consistency of shear wave velocity measurements of the triangle and rectus femoris muscles.

Results

There was no significant difference in shear wave velocities between the left and right sides of each muscle in longitudinal section (P>0.05). The shear wave velocities of all muscles were higher in longitudinal section than in cross section (P<0.05). The shear wave velocities of the biceps brachii muscles at the extended long axis section were higher on the lateral side than medial side (P<0.05). The shear wave velocities of the biceps brachii in extensor position were higher than those in flexion position (P<0.05). The shear wave velocities of lateral femoral muscles were higher in the 18~49 age group than in the 50~70 age group (P<0.05). The shear wave velocities of the biceps brachii were significantly higher in the BMI<18.5 kg/m2 group and 18.5 kg/m2≤BMI<24 kg/m2 group than in the BMI≥24 kg/m2 group (P<0.05). The shear wave velocities of the triangular muscles was higher in people with regular exercise than in those with less exercise (P<0.05). The intra-observer and inter-observer consistency of shear wave velocities of the deltoid and rectus femoris muscles was good or excellent (ICC>0.88).

Conclusion

Shear wave elastography can be used to quantitatively measure the hardness value of muscles in healthy people, and the section and position of the muscle and the body position, gender, age, BMI, and exercise habit of people are factors related to such measurements. Our results provide a basis for the in-depth study of idiopathic inflammatory myopathies.

图1 三角肌和肱二头肌的标准剪切波弹性成像测量图像。图a、b所示分别为三角肌横断面及纵断面;图c、d所示分别为肱二头肌伸直位横断面及纵断面
表1 左、右两侧肌肉纵断面剪切波速度比较[m/s,MP25P75)]
表2 横断面与纵断面肌肉剪切波速度比较[m/s,MP25P75)]
表3 双侧肱二头肌肌腹内侧与肌腹外侧剪切波速度比较(m/s,
xˉ
±s
表4 左侧肱二头肌伸直位与屈曲位剪切波速度比较[m/s,MP25P75)]
表5 不同性别、年龄、BMI及运动状态肌肉剪切波速度比较[m/s,MP25P75)]
表6 三角肌及股直肌剪切波速度观察者组间及组内一致性检验
1
Bachasson D, Dubois GJR, Allenbach Y, et al. Muscle Shearwave elastography in inclusion body myositis: feasibility, reliability and relationships with muscle impairments[J]. Ultrasound Med Biol, 2018, 44(7):1423-1432.
2
Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave elastography: basic physics and musculoskeletal applications[J]. Radiographics, 2017, 37(3): 855-870.
3
Lee SS, Gaebler-Spira D, Zhang LQ, et al. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy[J]. Clin Biomech, 2016, 31: 20-28.
4
Wang M, Fu W, Meng L, et al. SWE and SMI ultrasound techniques for monitoring needling treatment of ankylosing spondylitis: study protocol for a single-blinded randomized controlled trial[J]. Trials, 2021, 22(1): 385.
5
Kolb M, Ekert K, Schneider L, et al. The utility of shear-wave elastography in the evaluation of myositis[J]. Ultrasound Med Biol, 2021, 47(8): 2176-2185.
6
Chino K, Kawakami Y, Takahashi H. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography[J]. Clin Physiol Funct Imaging, 2017, 37(4): 394-399.
7
Kim K, Hwang HJ, Kim SG, et al. Can shoulder muscle activity be evaluated with ultrasound shear wave elastography?[J]. Clin Orthop Relat Res, 2018, 476(6): 1276-1283.
8
Baumer TG, Davis L, Dischler J, et al. Shear wave elastography of the supraspinatus muscle and tendon: repeatability and preliminary findings[J]. J Biomech, 2017, 53: 201-204.
9
Chen J, O'Dell M, He W, et al. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position[J]. Clin Imaging, 2017, 45: 26-29.
10
Tas S, Onur MR, Yılmaz S, et al. Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon[J]. J Ultrasound Med, 2017, 36(3): 565-570.
11
Moseley AM, Crosbie J, Adams R. Normative data for passive ankle plantarflexion-dorsiflexion flexibility[J]. Clin Biomech, 2001, 16: 514-521.
12
Bortolotto C, Lungarotti L, Fiorina I,et al. Influence of subjects' characteristics and technical variables on muscle stiffness measured by shear wave elastosonography[J]. J Ultrasound, 2017, 20: 139-146.
13
Ariji Y, Nakayama M, Nishiyama W, et al. Shear-wave sonoelastography for assessing masseter muscle hardness in comparison with strain sonoelastography: study with phantoms and healthy volunteers[J]. Dentomaxillofac Radiol, 2016, 45(2): 20150251.
14
Ewertsen C, Carlsen J, Perveez MA, et al. Reference values for shear wave elastography of neck and shoulder muscles in healthy individuals[J]. Ultrasound Int Open, 2018, 4(1): 23-29.
15
Gennisson JL, Deffieux T, Macé E, et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging[J]. Ultrasound Med Bio, 2010, 36(5): 789-801.
16
Morrow DA, Haut DTL, Odegard GM, et al. Transversely isotropic tensile material properties of skeletal muscle tissue[J]. J Mech Behav Biomed Mater, 2010, 3(1): 124-129.
17
Cortez CD, Hermitte L, Ramain A, et al. Ultrasound shear wave velocity in skeletal muscle: A reproducibility study[J]. Diagn Interv Imaging, 2016, 97 (1): 71-79.
18
Hatta T, Giambini H, Uehara K, et al. Quantitative assessment of rotator cuff muscle elasticity: reliability and feasibility of shear wave elastography[J]. J Biomech, 2015, 48(14): 3853-3858.
19
Shinohara M, Sabra K, Gennisson JL, et al. Real-time visualization of muscle stiffness distribution with ultrasoundshear wave imaging during muscle contraction[J]. Muscle Nerve, 2010, 42(3): 438-441.
20
Arda K, Ciledag N, Aktas E, et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography[J]. AJR Am J Roentgenol, 2011, 197(3): 532-536.
21
Eby SF, Cloud BA, Brandenburg JE, et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood[J]. Clin Biomech, 2015, 30(1): 22-27.
22
Kocur P, Tomczak M, Wiernicka M, et al. Relationship between age, BMI, head posture and superficial neck muscle stiffness and elasticity in adult women[J]. Sci Rep, 2019, 9(1): 8515.
23
Brandenburg JE, Eby SF, Song P, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness[J]. Arch Phys Med Rehabil, 2014, 95 (11): 2207-2219.
24
Yanagisawa O, Niitsu M, Kurihara T, et al. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study[J]. Clin Radiol, 2011, 66(9): 815-819.
[1] 王典, 刘双赫, 曾峥. 肩关节镜术后肌肉功能改变对颈椎形态及矢状面参数影响的自身前后对照队列研究[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 371-378.
[2] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[3] 程必盛, 黄海. 盆腔肿瘤手术后的"隐藏危机":泌尿功能障碍的防范与处理[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 1-5.
[4] 陈樽, 王平, 金华, 周美玲, 李青青, 黄永刚. 肌肉减少症预测结直肠癌术后切口疝发生的应用研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 639-644.
[5] 徐艳, 江秀娟, 王超, 江圆满. 股直肌剪切波弹性成像对COPD并发肌少症的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 454-457.
[6] 孙丹, 林汇斯. 妇科手术人体工学研究现状[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 318-320.
[7] 刘文竹, 唐窈, 刘付臣. 诱导多潜能干细胞在神经肌肉疾病研究中的应用进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 367-373.
[8] 王凯飞, 牟怡平, 李晓辉, 王瑞涛, 侯惠莲, 张月浪. 原发性肝平滑肌肉瘤临床病理特征及疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 357-362.
[9] 张鹏飞, 王雯. 肌肉因子对骨骼调控作用的研究进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 372-378.
[10] 吴孝琦, 罗飞, 史凡凡, 方青. 移动健康在慢性肌肉骨骼疼痛患者自我管理中的应用进展[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(04): 251-256.
[11] 王晓霞, 乌丹, 张江英, 乌雅罕, 郝颖楠, 斯日古楞. 《2023 年美国胸科学会关于成人急性呼吸窘迫综合征患者管理的临床实践指南更新》解读[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 338-343.
[12] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[13] 田春蕾, 李瑞雨, 肖凌勇, 刘艺, 王晓璇, 戴晓矞. 针刺治疗缺血性卒中后肢体功能障碍的神经影像研究概况[J/OL]. 中华针灸电子杂志, 2024, 13(02): 78-82.
[14] 刘通, 李菲, 朱莹, 王蓓. 剪切波弹性成像对甲状腺癌术后放射性碘治疗损伤唾液腺腺体的评估[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 80-84.
[15] 王超珺, 刘昭晖. 肌肉减少型肥胖的诊疗进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 269-275.
阅读次数
全文


摘要