切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (06) : 541 -547. doi: 10.3877/cma.j.issn.1672-6448.2022.06.009

肌肉骨骼超声影像学

健康人群四肢近端肌肉剪切波弹性成像测量的初步研究
唐远姣1, 刘伊铃2, 郭瑞倩1, 钟琳1, 邱逦1,()   
  1. 1. 610041 成都,四川大学华西医院超声医学科
    2. 610065 成都,四川大学望江医院超声科
  • 收稿日期:2021-06-27 出版日期:2022-06-01
  • 通信作者: 邱逦
  • 基金资助:
    国家自然科学基金项目(82001829,81971622)

Shear wave elastography measurement of proximal limb muscles in healthy people: a preliminary study

Yuanjiao Tang1, Yiling Liu2, Ruiqian Guo1, Lin Zhong1, Li Qiu1()   

  1. 1. Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
    2. Department of Ultrasound, Wangjiang Hospital of Sichuan University, Chengdu 610065, China
  • Received:2021-06-27 Published:2022-06-01
  • Corresponding author: Li Qiu
引用本文:

唐远姣, 刘伊铃, 郭瑞倩, 钟琳, 邱逦. 健康人群四肢近端肌肉剪切波弹性成像测量的初步研究[J]. 中华医学超声杂志(电子版), 2022, 19(06): 541-547.

Yuanjiao Tang, Yiling Liu, Ruiqian Guo, Lin Zhong, Li Qiu. Shear wave elastography measurement of proximal limb muscles in healthy people: a preliminary study[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(06): 541-547.

目的

测量健康人群四肢近端肌肉剪切波速度,分析与其相关的因素。

方法

选取2019年1月至2020年12月在四川大学华西医院招募的健康志愿者88例,记录受检者的性别、年龄、体质量指数(BMI)及运动习惯。测量不同肌肉(三角肌、肱二头肌、股直肌、股外侧肌)左右两侧及相同肌肉不同断面、不同位置及不同体位的剪切波速度,并对不同性别、年龄、BMI及运动状态的肌肉剪切波速度进行比较。随机抽取20例受试者,计算三角肌及股直肌剪切波速度测量的观察者间及观察者内一致性。

结果

各肌肉纵断面剪切波速度左、右两侧比较,差异无统计学意义(P均>0.05)。各肌肉剪切波速度纵断面均大于横断面(P均<0.05)。肱二头肌伸直位纵断面,其剪切波速度肌腹外侧大于肌腹内侧(P均<0.05)。肱二头肌剪切波速度伸直位均大于屈曲位(P均<0.05)。三角肌、肱二头肌剪切波速度男性高于女性(P均<0.05)。股外侧肌剪切波速度18~49岁组高于50~70岁组(P<0.05)。肱二头肌剪切波速度BMI<18.5 kg/m2组及18.5 kg/m2≤BMI<24 kg/m2组均高于BMI≥24 kg/m2组,差异均有统计学意义(P均<0.05)。三角肌剪切波速度规律运动者高于少运动者,差异有统计学意义(P<0.05)。三角肌及股直肌的剪切波速度观察者内及观察者间一致性均为良好或优秀(ICC均>0.88)。

结论

剪切波弹性成像(SWE)能够用于定量测量健康人群肌肉的硬度值,肌肉的断面和部位及受检者的体位、性别、年龄、BMI和运动习惯为与其相关的因素,研究结果为特发性炎性肌病的进一步研究提供了依据。

Objective

To measure the shear wave velocities of proximal limb muscles in healthy people and analyze the related factors.

Methods

A total of 88 healthy volunteers recruited from West China Hospital of Sichuan University from 2019 to 2020 were selected, and their gender, age, body mass index (BMI), and exercise habits were recorded. The shear wave velocities of different muscles (triangle, biceps brachialis, rectus femoris, and lateral femoral muscle) on both the left and right sides and in different sections, different positions, and different body positions were measured, and the shear wave velocities of the muscles between different genders, ages, exercise status, and BMIs were compared. Twenty subjects were randomly selected to calculate the inter-observer and intra-observer consistency of shear wave velocity measurements of the triangle and rectus femoris muscles.

Results

There was no significant difference in shear wave velocities between the left and right sides of each muscle in longitudinal section (P>0.05). The shear wave velocities of all muscles were higher in longitudinal section than in cross section (P<0.05). The shear wave velocities of the biceps brachii muscles at the extended long axis section were higher on the lateral side than medial side (P<0.05). The shear wave velocities of the biceps brachii in extensor position were higher than those in flexion position (P<0.05). The shear wave velocities of lateral femoral muscles were higher in the 18~49 age group than in the 50~70 age group (P<0.05). The shear wave velocities of the biceps brachii were significantly higher in the BMI<18.5 kg/m2 group and 18.5 kg/m2≤BMI<24 kg/m2 group than in the BMI≥24 kg/m2 group (P<0.05). The shear wave velocities of the triangular muscles was higher in people with regular exercise than in those with less exercise (P<0.05). The intra-observer and inter-observer consistency of shear wave velocities of the deltoid and rectus femoris muscles was good or excellent (ICC>0.88).

Conclusion

Shear wave elastography can be used to quantitatively measure the hardness value of muscles in healthy people, and the section and position of the muscle and the body position, gender, age, BMI, and exercise habit of people are factors related to such measurements. Our results provide a basis for the in-depth study of idiopathic inflammatory myopathies.

图1 三角肌和肱二头肌的标准剪切波弹性成像测量图像。图a、b所示分别为三角肌横断面及纵断面;图c、d所示分别为肱二头肌伸直位横断面及纵断面
表1 左、右两侧肌肉纵断面剪切波速度比较[m/s,MP25P75)]
表2 横断面与纵断面肌肉剪切波速度比较[m/s,MP25P75)]
表3 双侧肱二头肌肌腹内侧与肌腹外侧剪切波速度比较(m/s,
xˉ
±s
表4 左侧肱二头肌伸直位与屈曲位剪切波速度比较[m/s,MP25P75)]
表5 不同性别、年龄、BMI及运动状态肌肉剪切波速度比较[m/s,MP25P75)]
表6 三角肌及股直肌剪切波速度观察者组间及组内一致性检验
1
Bachasson D, Dubois GJR, Allenbach Y, et al. Muscle Shearwave elastography in inclusion body myositis: feasibility, reliability and relationships with muscle impairments[J]. Ultrasound Med Biol, 2018, 44(7):1423-1432.
2
Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave elastography: basic physics and musculoskeletal applications[J]. Radiographics, 2017, 37(3): 855-870.
3
Lee SS, Gaebler-Spira D, Zhang LQ, et al. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy[J]. Clin Biomech, 2016, 31: 20-28.
4
Wang M, Fu W, Meng L, et al. SWE and SMI ultrasound techniques for monitoring needling treatment of ankylosing spondylitis: study protocol for a single-blinded randomized controlled trial[J]. Trials, 2021, 22(1): 385.
5
Kolb M, Ekert K, Schneider L, et al. The utility of shear-wave elastography in the evaluation of myositis[J]. Ultrasound Med Biol, 2021, 47(8): 2176-2185.
6
Chino K, Kawakami Y, Takahashi H. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography[J]. Clin Physiol Funct Imaging, 2017, 37(4): 394-399.
7
Kim K, Hwang HJ, Kim SG, et al. Can shoulder muscle activity be evaluated with ultrasound shear wave elastography?[J]. Clin Orthop Relat Res, 2018, 476(6): 1276-1283.
8
Baumer TG, Davis L, Dischler J, et al. Shear wave elastography of the supraspinatus muscle and tendon: repeatability and preliminary findings[J]. J Biomech, 2017, 53: 201-204.
9
Chen J, O'Dell M, He W, et al. Ultrasound shear wave elastography in the assessment of passive biceps brachii muscle stiffness: influences of sex and elbow position[J]. Clin Imaging, 2017, 45: 26-29.
10
Tas S, Onur MR, Yılmaz S, et al. Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon[J]. J Ultrasound Med, 2017, 36(3): 565-570.
11
Moseley AM, Crosbie J, Adams R. Normative data for passive ankle plantarflexion-dorsiflexion flexibility[J]. Clin Biomech, 2001, 16: 514-521.
12
Bortolotto C, Lungarotti L, Fiorina I,et al. Influence of subjects' characteristics and technical variables on muscle stiffness measured by shear wave elastosonography[J]. J Ultrasound, 2017, 20: 139-146.
13
Ariji Y, Nakayama M, Nishiyama W, et al. Shear-wave sonoelastography for assessing masseter muscle hardness in comparison with strain sonoelastography: study with phantoms and healthy volunteers[J]. Dentomaxillofac Radiol, 2016, 45(2): 20150251.
14
Ewertsen C, Carlsen J, Perveez MA, et al. Reference values for shear wave elastography of neck and shoulder muscles in healthy individuals[J]. Ultrasound Int Open, 2018, 4(1): 23-29.
15
Gennisson JL, Deffieux T, Macé E, et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging[J]. Ultrasound Med Bio, 2010, 36(5): 789-801.
16
Morrow DA, Haut DTL, Odegard GM, et al. Transversely isotropic tensile material properties of skeletal muscle tissue[J]. J Mech Behav Biomed Mater, 2010, 3(1): 124-129.
17
Cortez CD, Hermitte L, Ramain A, et al. Ultrasound shear wave velocity in skeletal muscle: A reproducibility study[J]. Diagn Interv Imaging, 2016, 97 (1): 71-79.
18
Hatta T, Giambini H, Uehara K, et al. Quantitative assessment of rotator cuff muscle elasticity: reliability and feasibility of shear wave elastography[J]. J Biomech, 2015, 48(14): 3853-3858.
19
Shinohara M, Sabra K, Gennisson JL, et al. Real-time visualization of muscle stiffness distribution with ultrasoundshear wave imaging during muscle contraction[J]. Muscle Nerve, 2010, 42(3): 438-441.
20
Arda K, Ciledag N, Aktas E, et al. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography[J]. AJR Am J Roentgenol, 2011, 197(3): 532-536.
21
Eby SF, Cloud BA, Brandenburg JE, et al. Shear wave elastography of passive skeletal muscle stiffness: influences of sex and age throughout adulthood[J]. Clin Biomech, 2015, 30(1): 22-27.
22
Kocur P, Tomczak M, Wiernicka M, et al. Relationship between age, BMI, head posture and superficial neck muscle stiffness and elasticity in adult women[J]. Sci Rep, 2019, 9(1): 8515.
23
Brandenburg JE, Eby SF, Song P, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness[J]. Arch Phys Med Rehabil, 2014, 95 (11): 2207-2219.
24
Yanagisawa O, Niitsu M, Kurihara T, et al. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study[J]. Clin Radiol, 2011, 66(9): 815-819.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[3] 郭云云, 解翔, 彭梅, 姜凡, 毕玉, 何年安, 胡蕾, 杨杨, 王涛, 石玉洁, 陈冬冬. ACR-TIRADS与C-TIRADS分类分别联合二维剪切波弹性成像对甲状腺结节分类的诊断效能——多中心回顾性研究[J]. 中华医学超声杂志(电子版), 2023, 20(05): 511-516.
[4] 程广文, 丁红, 陈坤, 张祯, 黄翀, 张继明. 实时双幅联合弹性成像在慢性肝病肝纤维化与炎症分层诊断中的价值[J]. 中华医学超声杂志(电子版), 2023, 20(01): 63-69.
[5] 朱小刚, 阮小燕, 王娟, 邓灵芝, 王志兵, 徐俊涛, 吴乐彬. 超声引导下四肢浅表软组织血肿清除术的应用价值[J]. 中华医学超声杂志(电子版), 2022, 19(08): 828-831.
[6] 壮健, 潘昌杰, 李晓琴, 于梦霞, 张超, 朱韦文. 剪切波弹性成像技术评估子痫前期胎盘弹性的临床价值[J]. 中华医学超声杂志(电子版), 2022, 19(07): 660-666.
[7] 强坤坤, 罗红. 杜氏肌营养不良症患儿的高频超声与剪切波弹性成像诊断研究现状及前景[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 162-167.
[8] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[9] 茹天峰, 戴浩楠, 袁林, 吴坤平, 谢卫国. 对肌肉超声在严重烧伤患者肌肉性能评估中应用的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 197-203.
[10] 马金栋, 王蕾, 蔡婷婷, 焦向飞, 陈强谱. 腹部外科住院患者肌肉减少症状况及其影响因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(01): 69-74.
[11] 尤燕华, 胡玉清, 梁萌. 肌注维生素D2治疗维持性血液透析患者25羟维生素D缺乏的临床观察[J]. 中华肾病研究电子杂志, 2022, 11(04): 202-206.
[12] 张俊谊, 徐晓婷, 刘玲. 肌肉组织特异性miRNA与机械通气患者膈肌功能及撤机结局的关系[J]. 中华重症医学电子杂志, 2023, 09(01): 46-53.
[13] 马金栋, 焦向飞, 蔡婷婷, 陈强谱. 肌肉减少症与肝癌研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(03): 356-359.
[14] 王晓丽, 林少华, 刘莹莹, 范颖. 妊娠期女性盆底肌自主收缩的力量差异及对分娩、产后压力性尿失禁的影响[J]. 中华临床医师杂志(电子版), 2023, 17(03): 260-265.
[15] 何慧灵, 张宣宣, 张兰, 吴晓瑾, 姜美娟, 陈剑. 乳腺周边组织进行剪切波弹性成像诊断结节良恶性的价值研究[J]. 中华临床医师杂志(电子版), 2022, 16(04): 319-325.
阅读次数
全文


摘要