切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (06) : 578 -581. doi: 10.3877/cma.j.issn.1672-6448.2022.06.015

综述

基于人工智能的超声诊断甲状腺结节的研究进展
陶毅1, 赵鹏1, 许祥丽2, 戴全1, 孙家宝1, 田家玮1,()   
  1. 1. 150001 哈尔滨医科大学附属第二医院超声医学科
    2. 150056 哈尔滨市第二医院超声科
  • 收稿日期:2021-04-12 出版日期:2022-06-01
  • 通信作者: 田家玮

Progress in artificial intelligence based ultrasonic diagnosis of thyroid nodules

Yi Tao1, Peng Zhao1, Xiangli Xu2   

  • Received:2021-04-12 Published:2022-06-01
引用本文:

陶毅, 赵鹏, 许祥丽, 戴全, 孙家宝, 田家玮. 基于人工智能的超声诊断甲状腺结节的研究进展[J]. 中华医学超声杂志(电子版), 2022, 19(06): 578-581.

Yi Tao, Peng Zhao, Xiangli Xu. Progress in artificial intelligence based ultrasonic diagnosis of thyroid nodules[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(06): 578-581.

1
Yoon JH, Han K, Kim EK, et al. Diagnosis and management of small thyroid nodules: a comparative study with six guidelines for thyroid nodules [J]. Radiology, 2017, 283(2): 560-569.
2
Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer [J]. Thyroid, 2016, 26(1): 1-133.
3
Ha EJ, Baek JH, Na DG. Risk stratification of thyroid nodules on ultrasonography: current status and perspectives. [J]. Thyroid, 2017, 27(12):1463-1468.
4
Bai ZY,Chang LC,Yu RG, et al. Thyroid nodules risk stratification through deep learning based on ultrasound images [J]. Med Phys, 2020, 47(12): 6355-6365.
5
Brito JP, Gionfriddo MR, Alaa AN, et al. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis [J]. J Clin Endocrinol Metab, 2014, 99(4): 1253-1263.
6
Kwak JY, Han KH, Yoon JH, et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk [J]. Radiology, 2011, 260(3): 892-899.
7
Tessler FN, Middleton WD, Grant EG, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee [J]. J Am Coll Radiol, 2017, 14(5): 587-595.
8
Zhou JQ, Song YY, Zhan WW, et al. Thyroid imaging reporting and data system (TIRADS) for ultrasound features of nodules: multicentric retrospective study in China [J]. Endocrine, 2020, 72(1): 157-170.
9
Gao LY, Xi XH, Jiang YX, et al. Comparison among TIRADS (ACR TI-RADS and KWAK-TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules [J]. Endocrine, 2019, 64(1): 90-96.
10
Castellana M, Castellana C, Treglia G, et al. Performance of five ultrasound risk stratification systems in selecting thyroid nodules for FNA. A meta-analysis [J]. J Clin Endocrinol Metab, 2020, 105(5): dgz170.
11
Park VY, Kim EK, Jin YK, et al. Thyroid imaging reporting and data system and ultrasound elastography: diagnostic accuracy as a tool in recommending repeat fine-needle aspiration for solid thyroid nodules with non-diagnostic fine-needle aspiration cytology [J]. Ultrasound Med Biol, 2016, 42(2): 399-406.
12
Pei SF, Cong SZ, Zhang B, et al. Diagnostic value of multimodal ultrasound imaging in differentiating benign and malignant TI-RADS category 4 nodules [J]. Int J Clin Oncol, 2019, 24(6): 632-639.
13
Wu Q, Wang Y, Li Y, et al. Diagnostic value of contrast-enhanced ultrasound in solid thyroid nodules with and without enhancement [J]. Endocrine, 2016, 53(2): 480-488.
14
吴昊, 陈琴, 周青, 等. 评价剪切波弹性成像结合超声造影对甲状腺TI-RADS3、4类结节的鉴别诊断价值 [J]. 中国超声医学杂志, 2015, 31(8): 676-679.
15
吴松年, 何建娣, 蒋天安, 等. 声触诊组织成像量化技术鉴别诊断甲状腺TI-RADS 4类结节的临床研究 [J]. 中华超声影像学杂志, 2016, 25(7): 573-578.
16
Ospina NS, Brito JP, Maraka S, et al. Diagnostic accuracy of ultrasound-guided fine needle aspiration biopsy for thyroid malignancy: systematic review and meta-analysis [J]. Endocrine, 2016, 53(3): 651-661.
17
Choi SH, Kim EK, Kwak JY, et al. Interobserver and intraobserver variations in ultrasound assessment of thyroid nodules [J]. Thyroid, 2010, 20(2): 167-172.
18
Buda M, Wildmantobriner B, Hoang JK, et al. Management of thyroid nodules seen on us images: deep learning may match performance of radiologists [J]. Radiology, 2019, 292(3): 695-701.
19
Kwon SW, Choi IJ, Kang JY, et al. Ultrasonographic thyroid nodule classification using a deep convolutional neural network with surgical pathology [J]. J Digit Imaging, 2020, 33(5): 1202-1208.
20
Liu T, Guo Q, Lian C, et al. Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks [J]. Med Image Anal, 2019, 58: 101555.
21
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
22
李晓宇, 刘静静, 刘利平, 等. 计算机辅助检测和诊断中K-TIRADS、ACR-TIRADS、ATA的诊断效能比较以及辅助超声医师诊断甲状腺结节的研究 [J]. 中华超声影像学杂志, 2019, 28(10): 888-892.
23
许敏, 韩峰, 罗晓, 等. 计算机辅助诊断系统鉴别甲状腺结节良恶性的诊断效能及其影响因素 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(4): 252-256.
24
李潜, 刘春丽, 韦雅楠, 等. S-Detect技术在甲状腺可疑结节诊断中的应用价值 [J]. 中华超声影像学杂志, 2020, 29(11): 964-968.
25
Hughes NM, Nae A, Barry J, et al. Sonographic differences between conventional and follicular variant papillary thyroid carcinoma [J]. Eur Arch Otorhinolaryngol, 2017, 274(7): 1-7.
26
Park VY, Han K, Seong YK,et al. Diagnosis of thyroid nodules: performance of a deep learning convolutional neural network model vs. radiologists [J]. Sci Rep, 2019, 9(1): 17843.
27
Nguyen DT, Jin KK, Pham TD,et al. Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence [J]. Sensors (Basel), 2020, 20(7): 1822.
28
Chen YF, Li DD, Zhang X, et al. Computer aided diagnosis of thyroid nodules based on the devised small-datasets multi-view ensemble learning [J]. Med Image Anal, 2021, 67(1): 101819.
29
Han M, Ha EJ, Park JH. Computer-aided diagnostic system for thyroid nodules on ultrasonography: diagnostic performance based on the thyroid imaging reporting and data system classification and dichotomous outcomes [J]. AJNR Am J Neuroradiol, 2020, 42(3): 559-565.
30
Kim HL, Ha EJ, Han M. Real-World Performance of Computer-Aided Diagnosis System for thyroid nodules using ultrasonography [J]. Ultrasound Med Biol, 2019, 45(10): 2672-2678.
31
Koh J, Lee E, Han K, et al. Diagnosis of thyroid nodules on ultrasonography by a deep convolutional neural network [J]. Sci Rep, 2020, 10(1): 15245.
32
Nguyen DT, Pham TD, Batchuluun G, et al. Artificial intelligence-based thyroid nodule classification using information from spatial and frequency domains [J]. J Clin Med, 2019, 8(11): 1976.
33
Zhou H, Jin Y, Dai L, et al. Differential diagnosis of benign and malignant thyroid nodules using deep learning radiomics of thyroid ultrasound images [J]. Eur J Radiol, 2020, 127: 108992.
34
Sun C, Zhang YK, Chang Q, et al. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images [J]. Med Phys, 2020, 47(9): 3952-3960.
35
Baig FN, JTJVLunenburg, Liu SYW, et al. Computer-aided assessment of regional vascularity of thyroid nodules for prediction of malignancy [J]. Sci Rep, 2017, 7(1): 14350.
36
武宽, 秦品乐, 柴锐, 等. 基于不同超声成像的甲状腺结节良恶性判别 [J]. 计算机应用, 2020, 40(1): 77-82.
37
Lee JH, Baek JH, Kim JH, et al. Deep learning-based computer-aided diagnosis system for localization and diagnosis of metastatic lymph nodes on ultrasound: a pilot study [J]. Thyroid, 2018, 28(10): 1332-1338.
No related articles found!
阅读次数
全文


摘要