切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (10) : 1118 -1121. doi: 10.3877/cma.j.issn.1672-6448.2022.10.017

综述

胎儿先天性心脏病对相关器官的影响及评价方法
陈欣林1, 成晨1   
  1. 1. 430070 武汉,湖北省妇幼保健院超声科
  • 收稿日期:2021-07-02 出版日期:2022-10-01
  • 基金资助:
    湖北省科技厅重点研发计划项目(2020BCB002); 湖北省科技厅自然科学基金项目(2020CFB164); 湖北省卫健委创新团队项目(WJ2018H0132); 湖北省科技厅援疆援藏重点专项(2018AKB1496)

Effects of fetal congenital heart disease on related organs and evaluation methods

Xinlin Chen1, Chen Cheng1   

  • Received:2021-07-02 Published:2022-10-01
引用本文:

陈欣林, 成晨. 胎儿先天性心脏病对相关器官的影响及评价方法[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1118-1121.

Xinlin Chen, Chen Cheng. Effects of fetal congenital heart disease on related organs and evaluation methods[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(10): 1118-1121.

1
van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis [J]. J Am Coll Cardiol, 2011, 58(21): 2241-2247.
2
Bernier PL, Stefanescu A, Samoukovic G, et al. The challenge of congenital heart disease worldwide: epidemiologic and demographic facts [J]. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2010, 13(1): 26-34.
3
Yuan S, Zaidi S, Brueckner M. Congenital heart disease: emerging themes linking genetics and development[J]. Curr Opin Genet Dev, 2013, 23(3): 352-359.
4
Burd L, Deal E, Rios R, et al. Congenital heart defects and fetal alcohol spectrum disorders [J]. Congenit Heart Dis, 2007, 2(4): 250-255.
5
Maslen CL. Recent advances in placenta-heart interactions [J]. Front Physiol, 2018, 9: 735.
6
Marino BS, Lipkin PH, Newburger JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association [J]. Circulation, 2012, 126(9): 1143-1172.
7
Sarrechia I, Miatton M, Francois K, et al. Neurodevelopmental outcome after surgery for acyanotic congenital heart disease [J]. Res Dev Disabil, 2015, 45-46: 58-68.
8
van Houten JP, Rothman A, Bejar R. High incidence of cranial ultrasound abnormalities in full-term infants with congenital heart disease [J]. Am J Perinatol, 1996, 13(1): 47-53.
9
Te Pas AB, van Wezel-Meijler G, Bokenkamp-Gramann R, et al. Preoperative cranial ultrasound findings in infants with major congenital heart disease [J]. Acta Paediatr, 2005, 94(11): 1597-1603.
10
van Nisselrooij AEL, Jansen FAR, van Geloven N, et al. Impact of extracardiac pathology on head growth in fetuses with congenital heart defect [J]. Ultrasound Obstet Gynecol, 2020, 55(2): 217-225.
11
Khalil A, Suff N, Thilaganathan B, et al. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis [J]. Ultrasound Obstet Gynecol, 2014, 43(1): 14-24.
12
Donofrio MT, Massaro AN. Impact of congenital heart disease on brain development and neurodevelopmental outcome [J]. Int J Pediatr, 2010: 359390.
13
Jansen FA, Everwijn SM, Scheepjens R, et al. Fetal brain imaging in isolated congenital heart defects-a systematic review and meta-analysis [J]. Prenat Diagn, 2016, 36(7): 601-613.
14
Khalil A, Bennet S, Thilaganathan B, et al. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review [J]. Ultrasound Obstet Gynecol, 2016, 48(3): 296-307.
15
Szwast A, Tian Z, McCann M, et al. Comparative analysis of cerebrovascular resistance in fetuses with single-ventricle congenital heart disease [J]. Ultrasound Obstet Gynecol, 2012, 40(1): 62-67.
16
Williams IA, Fifer C, Jaeggi E, et al. The association of fetal cerebrovascular resistance with early neurodevelopment in single ventricle congenital heart disease [J]. Am Heart J, 2013, 165(4): 544-550. e1.
17
Sun L, Macgowan CK, Sled JG, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease [J]. Circulation, 2015, 131(15): 1313-1323.
18
Paladini D, Alfirevic Z, Carvalho JS, et al. ISUOG consensus statement on current understanding of the association of neurodevelopmental delay and congenital heart disease: impact on prenatal counseling [J]. Ultrasound Obstet Gynecol, 2017, 49(2): 287-288.
19
Donofrio MT, Duplessis AJ, Limperopoulos C. Impact of congenital heart disease on fetal brain development and injury [J]. Curr Opin Pediatr, 2011, 23(5): 502-511.
20
Masoller N, Martinez JM, Gomez O, et al. Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease [J]. Ultrasound Obstet Gynecol, 2014, 44(2): 182-187.
21
Haveman I, Fleurke-Rozema JH, Mulder EJH, et al. Growth patterns in fetuses with isolated cardiac defects [J]. Prenat Diagn, 2018, 38(5): 328-336.
22
Matthiesen NB, Henriksen TB, Gaynor JW, et al. Congenital heart defects and indices of fetal cerebral growth in a nationwide cohort of 924 422 liveborn infants [J]. Circulation, 2016, 133(6): 566-575.
23
Rychik J, Goff D, McKay E, et al. Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation [J]. Pediatric Cardiol, 2018, 39(6): 1165-1171.
24
Binder J, Carta S, Carvalho JS, et al. Evidence for uteroplacental malperfusion in fetuses with major congenital heart defects [J]. PLoS One, 2020, 15(2): e0226741.
25
Graupner O, Helfrich F, Ostermayer E, et al. Application of the INTERGROWTH-21st chart compared to customized growth charts in fetuses with left heart obstruction: late trimester biometry, cerebroplacental hemodynamics and perinatal outcome [J]. Arch Gynecol Obstet, 2019, 300(3): 601-613.
26
Turan OM, Turan S, Sanapo L, et al. Reference ranges for ductus venosus velocity ratios in pregnancies with normal outcomes [J]. J Ultrasound Med, 2014, 33(2): 329-336.
27
Akolekar R, Syngelaki A, Sarquis R, et al. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11-13 weeks [J]. Prenat Diagn, 2011, 31(1): 66-74.
28
Kay HH, Carroll BA, Bowie JD, et al. Nonuniformity of fetal umbilical systolic/diastolic ratios as determined with duplex Doppler sonography [J]. J Ultrasound Med, 1989, 8(8): 417-420.
29
Acharya G, Wilsgaard T, Berntsen GK, et al. Reference ranges for serial measurements of blood velocity and pulsatility index at the intra-abdominal portion, and fetal and placental ends of the umbilical artery [J]. Ultrasound Obstet Gynecol, 2005, 26(2): 162-169.
30
Ebbing C, Rasmussen S, Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements [J]. Ultrasound Obstet Gynecol, 2007, 30(3): 287-296.
31
Mari G, Deter RL, Carpenter RL, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative group for Doppler assessment of the blood velocity in anemic fetuses [J]. N Engl J Med, 2000, 342(1): 9-14.
32
Kaltman JR, Di H, Tian Z, et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus [J]. Ultrasound Obstet Gynecol, 2005, 25(1): 32-36.
33
Andescavage N, Yarish A, Donofrio M, et al. 3-D volumetric MRI evaluation of the placenta in fetuses with complex congenital heart disease [J]. Placenta, 2015, 36(9): 1024-1030.
34
Llurba Olive E, Xiao E, Natale DR, et al. Oxygen and lack of oxygen in fetal and placental development, feto-placental coupling, and congenital heart defects [J]. Birth Defects Res, 2018, 110(20): 1517-1530.
35
Gessert S, Kuhl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development [J]. Circ Res, 2010, 107(2): 186-199.
36
Zun Z, Zaharchuk G, Andescavage NN, et al. Non-invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity-selective arterial spin labeled MRI [J]. Sci Rep, 2017, 7(1): 16126.
37
Alcazar JL, Galvan R. Three-dimensional power Doppler ultrasound scanning for the prediction of endometrial cancer in women with postmenopausal bleeding and thickened endometrium [J]. Am J Obstet Gynecol, 2009, 200(1): 44.e1-e6.
38
Mathewlynn S, Collins SL. Volume and vascularity: Using ultrasound to unlock the secrets of the first trimester placenta [J]. Placenta, 2019, 84: 32-36.
39
Chen X, Wei X, Zhao S, et al. Characterization of placental microvascular architecture by MV-Flow imaging in normal and fetal growth-restricted pregnancies [J]. J Ultrasound Med, 2021, 40(8): 1533-1542.
No related articles found!
阅读次数
全文


摘要