1 |
Donofrio MT, Moon-Grady AJ, Hornberger LK, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association [J]. Circulation, 2014, 129(21): 2183-2242.
|
2 |
Feldman MK, Katyal S, Blackwood MS. US artifacts [J]. Radiographics, 2009, 29(4): 1179-1189.
|
3 |
Papolos A, Narula J, Bavishi C, et al. U.S. Hospital use of echocardiography: insights from the nationwide inpatient sample [J]. J Am Coll Cardiol, 2016, 67(5): 502-511.
|
4 |
Deo RC. Machine learning in medicine [J]. Circulation, 2015, 132(20): 1920-1930.
|
5 |
LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
|
6 |
Litjens G, Ciompi F, Wolterink JM, et al. State-of-the-art deep learning in cardiovascular image analysis [J]. JACC Cardiovasc Imaging, 2019, 12(8 Pt 1): 1549-1565.
|
7 |
Schuuring MJ, Išgum I, Cosyns B, et al. Routine echocardiography and artificial intelligence solutions [J]. Front Cardiovasc Med, 2021, 8: 648877.
|
8 |
Shad R, Quach N, Fong R, et al. Predicting post-operative right ventricular failure using video-based deep learning [J]. Nat Commun, 2021, 12(1): 5192.
|
9 |
Popescu BA, Stefanidis A, Fox KF, et al. Training, competence, and quality improvement in echocardiography: the European Association of Cardiovascular Imaging Recommendations: update 2020 [J]. Eur Heart J Cardiovasc Imaging, 2020, 21(12): 1305-1319.
|
10 |
Østvik A, Smistad E, Aase SA, et al. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks [J]. Ultrasound Med Biol, 2019, 45(2): 374-384.
|
11 |
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice: feasibility and diagnostic accuracy [J]. Circulation, 2018, 138(16): 1623-1635.
|
12 |
Narang A, Bae R, Hong H, et al. Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use [J]. JAMA Cardiol, 2021, 6(6): 624-632.
|
13 |
Snare SR, Torp H, Orderud F, et al. Real-time scan assistant for echocardiography [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2012, 59(3): 583-589.
|
14 |
Pavani SK, Subramanian N, Das Gupta M, et al. Quality metric for Parasternal Long AXis B-mode echocardiograms [J]. Med Image Comput Comput Assist Interv, 2012, 15(Pt 2): 478-485.
|
15 |
Vrettos A, Azarmehr N, Howard JP, et al. Automated assessment of image quality in 2D echocardiography using deep learning [C]. International Conference on Radiology, Medical Imaging and Radiation Oncology ICRMIRO, Paris, France: 2020.
|
16 |
Abdi AH, Luong C, Tsang T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J]. IEEE Trans Med Imaging, 2017, 36(6): 1221-1230.
|
17 |
Abdi AH, Luong C, Tsang T, et al. Quality assessment of echocardiographic cine using recurrent neural networks: feasibility on five standard view planes [C]. Medical Image Computing and Computer Assisted Intervention, Cham: Springer, 2017.
|
18 |
Luong C, Liao Z, Abdi A, et al. Automated estimation of echocardiogram image quality in hospitalized patients [J]. Int J Cardiovasc Imaging, 2021, 37(1): 229-239.
|
19 |
Dong J, Liu S, Liao Y, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J]. IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
|
20 |
Porter TR, Mulvagh SL, Abdelmoneim SS, et al. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography Guidelines Update [J]. J Am Soc Echocardiogr, 2018, 31(3): 241-274.
|
21 |
Senior R, Becher H, Monaghan M, et al. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017 [J]. Eur Heart J Cardiovasc Imaging, 2017, 18(11): 1205-1205af.
|
22 |
朱天刚, 靳文英, 张梅,等. 心脏超声增强剂临床应用规范专家共识 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(10): 731-734.
|
23 |
Li M, Zeng D, Xie Q, et al. A deep learning approach with temporal consistency for automatic myocardial segmentation of quantitative myocardial contrast echocardiography [J]. Int J Cardiovasc Imaging, 2021, 37(6): 1967-1978.
|
24 |
李明奇, 费洪文. 人工智能在心肌声学造影中的应用现状及发展趋势 [J]. 临床超声医学杂志, 2020, 22(7): 526-528.
|
25 |
Ding Y, Zeng D, Li M, et al. Towards Efficient human-machine collaboration: real-time correction effort prediction for ultrasound data acquisition [C]. International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham, 2021: 461-470.
|
26 |
Porter TR, Abdelmoneim S, Belcik JT, et al. Guidelines for the cardiac sonographer in the performance of contrast echocardiography: a focused update from the American Society of Echocardiography [J]. J Am Soc Echocardiogr, 2014, 27(8): 797-810.
|
27 |
Cosyns B, Helfen A, Leong-Poi H, et al. How to perform an ultrasound contrast myocardial perfusion examination? [J]. Eur Heart J Cardiovasc Imaging, 2022, 23(6): 727-729.
|
28 |
吴爵非, 彭冠华, 张建琴,等. 左心室和心肌声学造影的仪器设置与方法学 [J/CD]. 中华医学超声杂志(电子版), 2019, 16(10): 727-730.
|