1 |
Defebvre L, Krystkowiak P. Movement disorders and stroke [J]. Rev Neurol (Paris), 2016, 172(8-9): 483-487.
|
2 |
Pandyan AD, Gregoric M, Barnes MP, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement [J]. Disabil Rehabil, 2005, 27(1-2): 2-6.
|
3 |
Fergusson D, Hutton B, Drodge A. The epidemiology of major joint contractures: a systematic review of the literature [J]. Clin Orthop Relat Res, 2007, 456: 22-29.
|
4 |
Harlaar J, Becher JG, Snijders CJ, et al. Passive stiffness characteristics of ankle plantar flexors in hemiplegia [J]. Clin Biomech (Bristol, Avon), 2000, 15(4): 261-270.
|
5 |
Gao F, Grant TH, Roth EJ, et al. Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors [J]. Arch Phys Med Rehabil, 2009, 90(5): 819-826.
|
6 |
Lieber RL, Steinman S, Barash IA, et al. Structural and functional changes in spastic skeletal muscle [J]. Muscle Nerve, 2004, 29(5): 615-627.
|
7 |
Fry NR, Gough M, McNee AE, et al. Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy [J]. J Pediatr Orthop, 2007, 27(7): 769-774.
|
8 |
Gao F, Zhang LQ. Altered contractile properties of the gastrocnemius muscle poststroke [J]. J Appl Physiol (1985), 2008, 105(6): 1802-1808.
|
9 |
Ohata K, Tsuboyama T, Ichihashi N, et al. Measurement of muscle thickness as quantitative muscle evaluation for adults with severe cerebral palsy [J]. Phys Ther, 2006, 86(9): 1231-1239.
|
10 |
Kesikburun S, Yaşar E, Adıgüzel E, et al. Assessment of spasticity with sonoelastography following stroke: a feasibility study [J]. PM R, 2015, 7(12): 1254-1260.
|
11 |
Thibaut A, Chatelle C, Ziegler E, et al. Spasticity after stroke: physiology, assessment and treatment [J]. Brain Inj, 2013, 27(10): 1093-1105.
|
12 |
van Wijck FM, Pandyan AD, Johnson GR, et al. Assessing motor deficits in neurological rehabilitation: patterns of instrument usage [J]. Neurorehabil Neural Repair, 2001, 15(1): 23-30.
|
13 |
Burridge JH, Wood DE, Hermens HJ, et al. Theoretical and methodological considerations in the measurement of spasticity [J]. Disabil Rehabil, 2005, 27(1-2): 69-80.
|
14 |
Fridén J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells [J]. Muscle Nerve, 2003, 27(2): 157-164.
|
15 |
Eby S, Zhao H, Song P, et al. Quantitative evaluation of passive muscle stiffness in chronic stroke [J]. Am J Phys Med Rehabil, 2016, 95(12): 899-910.
|
16 |
Wu CH, Ho YC, Hsiao MY, et al. Evaluation of post-stroke spastic muscle stiffness using shear wave ultrasound elastography [J]. Ultrasound Med Biol, 2017, 43(6): 1105-1111.
|
17 |
Eby SF, Zhao H, Song P, et al. Quantifying spasticity in individual muscles using shear wave elastography [J]. Radiol Case Rep, 2017, 12(2): 348-352.
|
18 |
Gao J, Chen J, O'Dell M, et al. Ultrasound strain imaging to assess the biceps brachii muscle in chronic poststroke spasticity [J]. J Ultrasound Med, 2018, 37(8): 2043-2052.
|
19 |
Gao J, He W, Du LJ, et al. Quantitative ultrasound imaging to assess the biceps brachii muscle in chronic post-stroke spasticity: preliminary observation [J]. Ultrasound Med Biol, 2018, 44(9): 1931-1940.
|
20 |
Lee SSM, Jakubowski KL, Spear SC, et al. Muscle material properties in passive and active stroke-impaired muscle [J]. J Biomech, 2019, 83: 197-204.
|
21 |
Lee SSM, Spear S, Rymer WZ. Quantifying changes in material properties of stroke-impaired muscle [J]. Clin Biomech (Bristol, Avon), 2015, 30(3): 269-275.
|
22 |
Leng Y, Wang Z, Bian R, et al. Alterations of elastic property of spastic muscle with its joint resistance evaluated from shear wave elastography and biomechanical model [J]. Front Neurol, 2019, 10: 736.
|
23 |
郭雪园, 王月香, 崔建博, 等. 剪切波超声弹性成像与痉挛临床评估的相关性分析 [J]. 中华保健医学杂志, 2020, 22(5): 481-483.
|
24 |
郭雪园, 尹飒飒, 戈含笑, 等. 剪切波超声弹性成像对脑卒中患者肱二头肌硬度变化的定量评估 [J]. 解放军医学院学报, 2020, 41(8): 760-763, 768.
|
25 |
芦海涛, 郭忆, 王艺铮, 等. 超声弹性成像在脑卒中后前臂屈肌痉挛定量评价中的应用 [J]. 中国康复理论与实践, 2020, 26(5): 579-582.
|
26 |
郭忆, 李雪梅, 张皓, 等. 超声剪切波弹性成像在脑卒中患者小腿康复评定中的应用 [J]. 中国康复理论与实践, 2020, 26(7): 753-756.
|
27 |
蒋明霞, 陈轩静, 胡锦荣, 等. 超声剪切波弹性成像对脑卒中患者腓肠肌硬度变化的定量评估 [J]. 数理医药学杂志, 2019, 32(9): 1283-1285.
|
28 |
Jakubowski KL, Terman A, Santana RVC, et al. Passive material properties of stroke-impaired plantarflexor and dorsiflexor muscles [J]. Clin Biomech (Bristol, Avon), 2017, 49: 48-55.
|
29 |
Le Sant G, Nordez A, Hug F, et al. Effects of stroke injury on the shear modulus of the lower leg muscle during passive dorsiflexion [J]. J Appl Physiol (1985), 2019, 126(1): 11-22.
|
30 |
Mathevon L, Michel F, Aubry S, et al. Two-dimensional and shear wave elastography ultrasound: a reliable method to analyse spastic muscles? [J]. Muscle Nerve, 2018, 57(2): 222-228.
|
31 |
郭忆, 芦海涛, 李雪梅, 等. 超声剪切波弹性成像评价脑卒中后下肢运动障碍患者小腿三头肌与跟腱的研究 [J]. 中国超声医学杂志, 2020, 36(8): 741-744.
|
32 |
Gao J, Rubin JM, Chen J, et al. Ultrasound elastography to assess botulinum toxin a treatment for post-stroke spasticity: a feasibility study [J]. Ultrasound Med Biol, 2019, 45(5): 1094-1102.
|
33 |
樊留博, 韩文胜, 田瑛, 等. 超声弹性成像技术在脑卒中后痉挛性偏瘫患者康复疗效评估中的应用 [J]. 新医学, 2017, 48(4): 229-234.
|