1 |
Gilboa SM, Salemi JL, Nembhard WN, et al. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006[J]. Circulation, 2010, 122(22): 2254-2263.
|
2 |
Friedberg MK, Silverman NH, Moon-Grady AJ, et al. Prenatal detection of congenital heart disease[J]. J Pediatr, 2009, 155(1): 26-31.
|
3 |
鲍圣芳. 人工智能在超声心动图技术中的研究进展[J]. 医学影像学杂志, 2020, 30(6): 1098-1100.
|
4 |
Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(11): 1317-1335.
|
5 |
Jantarasaengaram S, Vairojanavong K. Eleven fetal echocardiographic planes using 4-dimensional ultrasound with spatio-temporal image correlation (STIC): a logical approach to fetal heart volume analysis[J]. Cardiovasc Ultrasound, 2010, 8: 41.
|
6 |
Yeo L, Romero R. Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart[J]. Ultrasound Obstet Gynecol, 2013, 42(3): 268-284.
|
7 |
Yeo L, Luewan S, Romero R. Fetal intelligent navigation echocardiography (FINE) Detects 98% of congenital heart disease[J]. J Ultrasound Med, 2018, 37(11): 2577-2593.
|
8 |
Yeo L, Romero R. New and advanced features of fetal intelligent navigation echocardiography (FINE) or 5D heart[J]. J Matern Fetal Neonatal Med, 2020. 1759538.[Epub 2020 May 6].
|
9 |
Ma M, Li Y, Chen R, et al. Diagnostic performance of fetal intelligent navigation echocardiography (FINE) in fetuses with double-outlet right ventricle (DORV)[J]. Int J Cardiovasc Imaging, 2020, 36(11): 2165-2172.
|
10 |
Huang C, Zhao BW, Chen R, et al. Is fetal intelligent navigation echocardiography helpful in screening for d-transposition of the great arteries?[J]. J Ultrasound Med, 2020, 39(4): 775-784.
|
11 |
方昀. 胎儿心脏超声智能导航技术联合彩色血流成像在基本胎儿超声心动图切面诊断要素显示中的价值[D]. 杭州: 浙江大学, 2017.
|
12 |
Yeo L, Romero R. New and advanced features of fetal intelligent navigation echocardiography (FINE) or 5D heart[J]. J Matern Fetal Neonatal Med, 2022, 35(8): 1498-1516.
|
13 |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
14 |
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review[J]. Med Image Anal, 2019, 58: 101552.
|
15 |
Xu L, Liu M, Shen Z, et al. DW-Net: A cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography[J]. Comput Med Imaging Graph, 2020, 80: 101690.
|
16 |
Arnaout R, Curran L, Zhao Y, et al. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease[J]. Nat Med, 2021, 27(5): 882-891.
|
17 |
Yu L, Guo Y, Wang Y, et al. Determination of fetal left ventricular volume based on two-dimensional echocardiography[J]. J Healthc Eng, 2017, 2017: 4797315.
|
18 |
Gong Y, Zhang Y, Zhu H, et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning[J]. IEEE Trans Med Imaging, 2020, 39(4): 1206-1222.
|
19 |
周小雪, 张莹莹, 张烨, 等. 人工智能技术在胎儿超声心动图四腔心切面筛查中的应用[J]. 中华超声影像学杂志, 2020, 29(8): 668-672.
|
20 |
Akkus Z, Cai J, Boonrod A, et al. A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow[J]. J Am Coll Radiol, 2019, 16(9 Pt B): 1318-1328.
|
21 |
张湘敏, 吕梁, 刘兴利, 等. 人工智能在心脏影像诊断中的研究进展[J]. 国际医学放射学杂志, 2020, 43(2): 192-196.
|