切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (06) : 650 -653. doi: 10.3877/cma.j.issn.1672-6448.2023.06.014

综述

基于人工智能的超声心动图评估左心室舒张功能的应用进展
王亚文, 吴伟春()   
  1. 100037 中国医学科学院 北京协和医学院 国家心血管病中心 阜外医院超声影像中心
  • 收稿日期:2022-01-18 出版日期:2023-06-01
  • 通信作者: 吴伟春

Progress in application of artificial intelligence-based echocardiography in assessment of left ventricular diastolic function

Yawen Wang, Weichun Wu()   

  • Received:2022-01-18 Published:2023-06-01
  • Corresponding author: Weichun Wu
引用本文:

王亚文, 吴伟春. 基于人工智能的超声心动图评估左心室舒张功能的应用进展[J]. 中华医学超声杂志(电子版), 2023, 20(06): 650-653.

Yawen Wang, Weichun Wu. Progress in application of artificial intelligence-based echocardiography in assessment of left ventricular diastolic function[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(06): 650-653.

[1]
Playford D, Strange G, Celermajer DS, et al. Diastolic dysfunction and mortality in 436 360 men and women: the National Echo Database Australia (NEDA) [J]. Eur Heart J Cardiovasc Imaging, 2021, 22(5): 505-515.
[2]
Van Riet EE, Hoes AW, Wagenaar KP, et al. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review [J]. Eur J Heart Fail, 2016, 18(3): 242-252.
[3]
Nagueh SF. Left ventricular diastolic function: understanding pathophysiology, diagnosis, and prognosis with echocardiography [J]. JACC Cardiovasc Imaging, 2020, 13(1 Pt 2): 228-244.
[4]
Almeida JG, Fontes-Carvalho R, Sampaio F, et al. Impact of the 2016 ASE/EACVI recommendations on the prevalence of diastolic dysfunction in the general population [J]. Eur Heart J Cardiovasc Imaging, 2018, 19(4): 380-386.
[5]
Tromp J, Seekings PJ, Hung C-L, et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study [J]. Lancet Digit Health, 2022, 4(1): e46-e54.
[6]
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.
[7]
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J]. Eur Heart J Cardiovasc Imaging, 2016, 17(12): 1321-1360.
[8]
Kasner M, Westermann D, Lopez B, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction [J]. J Am Coll Cardiol, 2011, 57(8): 977-985.
[9]
Shah AM, Cikes M, Prasad N, et al. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction [J]. J Am Coll Cardiol, 2019, 74(23): 2858-2873.
[10]
Hubert A, Le Rolle V, Galli E, et al. New expectations for diastolic function assessment in transthoracic echocardiography based on a semi-automated computing of strain-volume loops [J]. Eur Heart J Cardiovasc Imaging, 2020, 21(12): 1366-1371.
[11]
Telles F, Nanayakkara S, Evans S, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction [J]. Eur J Heart Fail, 2019, 21(4): 495-505.
[12]
Fan J L, Su B, Zhao X, et al. Correlation of left atrial strain with left ventricular end-diastolic pressure in patients with normal left ventricular ejection fraction [J]. Int J Cardiovasc Imaging, 2020, 36(9): 1659-1666.
[13]
Reddy YNV, Obokata M, Egbe A, et al. Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction [J]. Eur J Heart Fail, 2019, 21(7): 891-900.
[14]
Mordi IR, Singh S, Rudd A, et al. Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects [J]. JACC Cardiovasc Imaging, 2018, 11(4): 577-585.
[15]
Lisi M, Mandoli GE, Cameli M, et al. Left atrial strain by speckle tracking predicts atrial fibrosis in patients undergoing heart transplantation [J]. Eur Heart J Cardiovasc Imaging, 2022, 23(6): 829-835.
[16]
Omar AMS, Narula S, Abdel Rahman MA, et al. Precision phenotyping in heart failure and pattern clustering of ultrasound data for the assessment of diastolic dysfunction [J]. JACC Cardiovasc Imaging, 2017, 10(11): 1291-1303.
[17]
Thomas L, Marwick TH, Popescu BA, et al. Left atrial structure and function, and left ventricular diastolic dysfunction: JACC state-of-the-art review [J]. J Am Coll Cardiol, 2019, 73(15): 1961-1977.
[18]
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J]. J Am Soc Echocardiogr, 2015, 28(1): 1-39 e14.
[19]
Tsang W, Salgo IS, Medvedofsky D, et al. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm [J]. JACC Cardiovasc Imaging, 2016, 9(7): 769-782.
[20]
Medvedofsky D, Mor-Avi V, Amzulescu M, et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study [J]. Eur Heart J Cardiovasc Imaging, 2018, 19(1): 47-58.
[21]
Lancaster MC, Salem Omar AM, Narula S, et al. Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance [J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1149-1161.
[22]
Pandey A, Kagiyama N, Yanamala N, et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction [J]. JACC Cardiovasc Imaging, 2021, 14(10): 1887-1900.
[23]
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC [J]. Eur J Heart Fail, 2016, 18(8): 891-975.
[24]
Pieske B, Tschope C, De Boer RA, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) [J]. Eur Heart J, 2019, 40(40): 3297-3317.
[25]
Nauta JF, Hummel YM, Van Der Meer P, et al. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardiographic diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction [J]. Eur J Heart Fail, 2018, 20(9): 1303-1311.
[26]
Chiou YA, Hung CL, Lin SF. AI-assisted echocardiographic prescreening of heart failure with preserved ejection fraction on the basis of intrabeat dynamics [J]. JACC Cardiovasc Imaging, 2021, 14(11): 2091-2104.
[27]
Segar MW, Patel KV, Ayers C, et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis [J]. Eur J Heart Fail, 2020, 22(1): 148-158.
[28]
Quarta CC, Solomon SD, Uraizee I, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis [J]. Circulation, 2014, 129(18): 1840-1849.
[29]
Przewlocka-Kosmala M, Marwick TH, Dabrowski A, et al. Contribution of cardiovascular reserve to prognostic categories of heart failure with preserved ejection fraction: a classification based on machine learning [J]. J Am Soc Echocardiogr, 2019, 32(5): 604-615 e6.
[30]
Bayes-Genis A, Iborra-Egea O, Spitaleri G, et al. Decoding empagliflozin's molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence [J]. Sci Rep, 2021, 11(1): 12025.
[31]
Welch TD, Ling LH, Espinosa RE, et al. Echocardiographic diagnosis of constrictive pericarditis: Mayo Clinic criteria [J]. Circ Cardiovasc Imaging, 2014, 7(3): 526-534.
[32]
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy [J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330.
No related articles found!
阅读次数
全文


摘要