1 |
Tsilimigras DI, Brodt P, Clavien PA, et al.Liver metastases[J].Nat Rev Dis Primers, 2021, 7(1):27.
|
2 |
He Y, Guan S, Wu S, et al.Risk factors and prediction nomogram of local regeneration after ultrasound-guided microwave ablation of uterine flbroids[J].J Minim Invasive Gynecol, 2024, 31(11):956-965.
|
3 |
Huang Z, Cheng XQ, Lu RR, et al.A radiomics-based nomogram using ultrasound carotid plaque evaluation for predicting cerebrocardiovascular events in asymptomatic patients[J].Acad Radiol, 2024,31(12):5204-5216.
|
4 |
Lin J, Liu H, Liang S, et al.The relationship between rim-like enhancement on pre-ablation contrast-enhanced ultrasound of colorectal liver metastasis and early intrahepatic progression after thermal ablation:a preliminary study[J].Ultrasound Med Biol, 2025,51(2):358-363.
|
5 |
Guan S, He Y, Zhou X, et al.Risk factors for symptom recurrence after microwave ablation of adenomyosis:a preliminary retrospective study[J].Int J Hyperthermia, 2024, 41(1):2429556.
|
6 |
Shimozono T, Shiiba T, Takano K.Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease[J].Eur Radiol, 2024, 34(12):7921-7933.
|
7 |
Guo Z, Zhao M, Liu Z, et al.Feasibility of ultrasound radiomics based models for classification of liver fibrosis due to Schistosoma japonicum infection[J].PLoS Negl Trop Dis, 2024, 18(6):e0012235.
|
8 |
LeCun Y, Bengio Y, Hinton G.Deep learning[J].Nature, 2015,521(7553):436-444.
|
9 |
Obermeyer Z, Emanuel EJ.Predicting the future - big data, machine learning, and clinical medicine[J].N Engl J Med, 2016, 375(13):1216-1219.
|
10 |
Li J, Li C, Zhou X, et al.US risk stratiflcation system for follicular thyroid neoplasms[J].Radiology, 2023, 309(2):e230949.
|
11 |
Chen LD, Huang ZR, Yang H, et al.US-based sequential algorithm integrating an AI model for advanced liver fibrosis screening[J].Radiology, 2024, 311(1):e231461.
|
12 |
Wu SH, Tong WJ, Li MD, et al.Collaborative enhancement of consistency and accuracy in US diagnosis of thyroid nodules using large language models[J].Radiology, 2024, 310(3):e232255.
|
13 |
Vara G, Rustici A, Sechi A, et al.Texture analysis on ultrasound:the effect of time gain compensation on histogram metrics and gray-level matrices[J].J Med Phys, 2020, 45(4):249-255.
|
14 |
Zhang Q, Zhang Q, Liu T, et al.Development and external validation of a simple-to-use dynamic nomogram for predicting breast malignancy based on ultrasound morphometric features:a retrospective multicenter study[J].Front Oncol, 2022, 12:868164.
|
15 |
Sullivan DC, Obuchowski NA, Kessler LG, et al.Metrology standards for quantitative imaging biomarkers[J].Radiology, 2015, 277(3):813-825.
|
16 |
Hudson JM, Williams R, Lloyd B, et al.Improved flow measurement using microbubble contrast agents and disruption-replenishment:clinical application to tumour monitoring[J].Ultrasound Med Biol,2011, 37(8):1210-1221.
|
17 |
Williams R, Hudson JM, Lloyd BA, et al.Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy:a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy[J].Radiology, 2011, 260(2):581-590.
|
18 |
Lassau N, Koscielny S, Albiges L, et al.Metastatic renal cell carcinoma treated with sunitinib:early evaluation of treatment response using dynamic contrast-enhanced ultrasonography[J].Clin Cancer Res, 2010, 16(4):1216-1225.
|
19 |
Lassau N, Bonastre J, Kind M, et al.Validation of dynamic contrastenhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors:the French multicenter support for innovative and expensive techniques study[J].Invest Radiol, 2014, 49(12):794-800.
|
20 |
Hudson JM, Bailey C, Atri M, et al.The prognostic and predictive value of vascular response parameters measured by dynamic contrastenhanced-CT, -MRI and -US in patients with metastatic renal cell carcinoma receiving sunitinib[J].Eur Radiol, 2018, 28(6):2281-2290.
|
21 |
Danilo A, Luigi C, Alessio F, et al.Ultrasound medical imaging techniques:a survey[J].ACM Comput Surv, 2021, 54(3):Article 67.
|
22 |
Seoni S, Matrone G, Meiburger KM.Texture analysis of ultrasound images obtained with different beamforming techniques and dynamic ranges - A robustness study[J].Ultrasonics, 2023, 131:106940.
|
23 |
Lee SE, Han K, Kwak JY, et al.Radiomics of US texture features in differential diagnosis between triple-negative breast cancer and flbroadenoma[J].Sci Rep, 2018, 8(1):13546.
|
24 |
Dong S, Shen B, Jiang X, et al.Comparison of vagus nerve crosssectional area between brain-flrst and body-flrst Parkinson's disease[J].NPJ Parkinsons Dis, 2024, 10(1):231.
|
25 |
中华医学会超声医学分会, 中国研究型医院学会肿瘤介入专业委员会, 国家卫生和健康委员会能力建设和继续教育中心超声医学专家委员会.肝病超声诊断指南[J].临床肝胆病杂志, 2021, 37(8):1770-1785.
|
26 |
Bota S, Sporea I, Sirli R, et al.Intra- and interoperator reproducibility of acoustic radiation force impulse (ARFI) elastography--preliminary results[J].Ultrasound Med Biol, 2012, 38(7):1103-1108.
|
27 |
Karson TH, Chandra S, Morehead AJ, et al.JPEG compression of digital echocardiographic images:impact on image quality[J].J Am Soc Echocardiogr, 1995, 8(3):306-318.
|
28 |
Liu K, Chen D, Liao J, et al.JPEG robust invertible grayscale[J].IEEE Trans Vis Comput Graph, 2022, 28(12):4403-4417.
|
29 |
Martello SE, Xia J, Kusunose J, et al.Ultrafast power doppler ultrasound enables longitudinal tracking of vascular changes that correlate with immune response after radiotherapy[J].Theranostics,2024, 14(18):6883-6896.
|
30 |
Sharifi Y, Shafiei S, Ashgzari MD, et al.Thyroid ultrasound-image dataset[J].Stud Health Technol Inform, 2022, 294:397-402.
|
31 |
Lee JY, Kim JH, Kim YK, et al.US predictors of papillary thyroid microcarcinoma progression at active surveillance[J].Radiology, 2023,309(1):e230006.
|
32 |
Uppot RN.Impact of obesity on radiology[J].Radiol Clin North Am,2007, 45(2):231-246.
|
33 |
Bashyam VM, Doshi J, Erus G, et al.Deep generative medical image harmonization for improving cross-site generalization in deep learning predictors[J].J Magn Reson Imaging, 2022, 55(3):908-916.
|
34 |
Bell TK, Godfrey KJ, Ware AL, et al.Harmonization of multi-site MRS data with ComBat[J].Neuroimage, 2022, 257:119330.
|
35 |
Li MD, Cheng MQ, Chen LD, et al.Reproducibility of radiomics features from ultrasound images:influence of image acquisition and processing[J].Eur Radiol, 2022, 32(9):5843-5851.
|
36 |
Teng Y, Ai Y, Liang T, et al.The effects of automatic segmentations on preoperative lymph node status prediction models with ultrasound radiomics for patients with early stage cervical cancer[J].Technol Cancer Res Treat, 2022, 21:15330338221099396.
|
37 |
Chen Z, Jiang M, Chiu B.Unsupervised shape-and-texture-based generative adversarial tuning of pre-trained networks for carotid segmentation from 3D ultrasound images[J].Med Phys, 2024, 51(10):7240-7256.
|
38 |
Duron L, Savatovsky J, Fournier L, et al.Can we use radiomics in ultrasound imaging? Impact of preprocessing on feature repeatability[J].Diagn Interv Imaging, 2021, 102(11):659-667.
|
39 |
Li Q, Zhang W, Liao T, et al.An AI-driven preoperative radiomic subtype for predicting the prognosis and treatment response of patients with papillary thyroid carcinoma[J].Clin Cancer Res, 2025, 31(1):139-150.
|
40 |
Liu X, Xiao W, Qiao J, et al.Prediction of lymph node metastasis in endometrial cancer based on color Doppler ultrasound radiomics[J].Acad Radiol, 2024, 31(11):4499-4508.
|
41 |
Zhu X, Li J, Li H, et al.Intranodular and perinodular ultrasound radiomics distinguishes benign and malignant thyroid nodules:a multicenter study[J].Gland Surg, 2024, 13(12):2359-2371.
|
42 |
Gillies RJ, Kinahan PE, Hricak H.Radiomics:images are more than pictures, they are data[J].Radiology, 2016, 278(2):563-577.
|
43 |
Zwanenburg A, Vallieres M, Abdalah MA, et al.The image biomarker standardization initiative:standardized quantitative radiomics for highthroughput image-based phenotyping[J].Radiology, 2020, 295(2):328-338.
|
44 |
Zhang C, de AFFL, Shi Z, et al.Systematic review of radiomic biomarkers for predicting immune checkpoint inhibitor treatment outcomes[J].Methods, 2021, 188:61-72.
|
45 |
Han A, Labyed Y, Sy EZ, et al.Inter-sonographer reproducibility of quantitative ultrasound outcomes and shear wave speed measured in the right lobe of the liver in adults with known or suspected nonalcoholic fatty liver disease[J].Eur Radiol, 2018, 28(12):4992-5000.
|
46 |
Yoon JS, Oh K, Shin Y, et al.Domain generalization for medical image analysis:a review[J].Proceedings of the IEEE, 2024, 112(10):1583-1609.
|
47 |
Liu Y, Chen J, Zhang C, et al.Ultrasound-based radiomics can classify the etiology of cervical lymphadenopathy:a multi-center retrospective study[J].Front Oncol, 2022, 12:856605.
|
48 |
Pfaehler E, van Sluis J, Merema BBJ, et al.Experimental multicenter and multivendor evaluation of the performance of PET radiomic features using 3-dimensionally printed phantom inserts[J].J Nucl Med,2020, 61(3):469-476.
|
49 |
Orlhac F, Eertink JJ, Cottereau AS, et al.A guide to ComBat harmonization of imaging biomarkers in multicenter studies[J].J Nucl Med, 2022, 63(2):172-179.
|
50 |
Alberto BJ, David S, Josep DF, et al.A critical review on the use (and misuse) of differential privacy in machine learning[J].ACM Comput Surv, 2022, 55 (8):Pages 160:1 - 160:16.
|
51 |
Su ZY, Siak PY, Lwin YY, et al.Epidemiology of nasopharyngeal carcinoma:current insights and future outlook[J].Cancer Metastasis Rev, 2024, 43(3):919-939.
|
52 |
Seoni S, Shahini A, Meiburger KM, et al.All you need is data preparation:A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems[J].Comput Methods Programs Biomed, 2024, 250:108200.
|
53 |
Liu C, Qiao M, Jiang F, et al.TN-USMA Net:Triple normalizationbased gastrointestinal stromal tumors classification on multicenter EUS images with ultrasound-speciflc pretraining and meta attention[J].Med Phys, 2021, 48(11):7199-7214.
|
54 |
Homayoun H, Chan WY, Kuzan TY, et al.Applications of machinelearning algorithms for prediction of benign and malignant breast lesions using ultrasound radiomics signatures:A multi-center study[J].Biocybern Biomed Eng, 2022, 42(3):921-933.
|
55 |
Ren S, Qi Q, Liu S, et al.Preoperative prediction of pathological grading of hepatocellular carcinoma using machine learning-based ultrasomics:A multicenter study[J].Eur J Radiol, 2021, 143:109891.
|
56 |
Zhou Z, Guo Y, Wang Y.Handheld ultrasound video high-quality reconstruction using a low-rank representation multipathway generative adversarial network[J].IEEE Trans Neural Netw Learn Syst, 2021, 32(2):575-588.
|
57 |
Yao Z, Luo T, Dong Y, et al.Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis[J].Nat Commun, 2023, 14(1):788.
|
58 |
Xing X, Li L, Sun M, et al.Deep-learning-based 3D super-resolution CT radiomics model:Predict the possibility of the micropapillary/solid component of lung adenocarcinoma[J].Heliyon, 2024, 10(13):e34163.
|
59 |
Zhang C, Wang P, He J, et al.Super-resolution reconstruction improves multishell diffusion:using radiomics to predict adult-type diffuse glioma IDH and grade[J].Front Oncol, 2024, 14:1435204.
|
60 |
Zhao Z, Qin Y, Shao K, et al.Radiomics harmonization in ultrasound images for cervical cancer lymph node metastasis prediction using Cycle-GAN[J].Technol Cancer Res Treat, 2024, 23:15330338241302237.
|
61 |
Zhang R, Oliver LD, Voineskos AN, et al.A structured multivariate approach for removal of latent batch effects[J].Imaging Neurosci(Camb),2023, 1:1-16.
|
62 |
Johnson WE, Li C, Rabinovic A.Adjusting batch effects in microarray expression data using empirical Bayes methods[J].Biostatistics, 2007,8(1):118-127.
|
63 |
van Timmeren JE, Leijenaar RTH, van Elmpt W, et al.Test-retest data for radiomics feature stability analysis:generalizable or studyspeciflc?[J].Tomography, 2016, 2(4):361-365.
|
64 |
Fortin JP, Cullen N, Sheline YI, et al.Harmonization of cortical thickness measurements across scanners and sites[J].Neuroimage,2018, 167:104-120.
|
65 |
Orlhac F, Frouin F, Nioche C, et al.Validation of a method to compensate multicenter effects affecting CT radiomics[J].Radiology,2019, 291(1):53-59.
|
66 |
Orlhac F, Lecler A, Savatovski J, et al.How can we combat multicenter variability in MR radiomics? Validation of a correction procedure[J].Eur Radiol, 2021, 31(4):2272-2280.
|
67 |
Morelli L, Paganelli C, Marvaso G, et al.Addressing intra- and interinstitution variability of a radiomic framework based on apparent diffusion coefficient in prostate cancer[J].Med Phys, 2024, 51(11):8096-8107.
|
68 |
Leithner D, Schoder H, Haug A, et al.Impact of ComBat harmonization on PET radiomics-based tissue classification:a dualcenter PET/MRI and PET/CT study[J].J Nucl Med, 2022, 63(10):1611-1616.
|
69 |
Badic B, Da-Ano R, Poirot K, et al.Prediction of recurrence after surgery in colorectal cancer patients using radiomics from diagnostic contrast-enhanced computed tomography:a two-center study[J].Eur Radiol, 2022, 32(1):405-414.
|
70 |
Belge JB, Mulders PCR, Van Diermen L, et al.White matter changes following electroconvulsive therapy for depression:a multicenter ComBat harmonization approach[J].Transl Psychiatry, 2022, 12(1):517.
|
71 |
Leithner D, Nevin RB, Gibbs P, et al.ComBat harmonization for MRI radiomics:Impact on nonbinary tissue classiflcation by machine learning[J].Invest Radiol, 2023, 58(9):697-701.
|
72 |
Lucia F, Louis T, Cousin F, et al.Multicentric development and evaluation of [(18)F]FDG PET/CT and CT radiomic models to predict regional and/or distant recurrence in early-stage non-small cell lung cancer treated by stereotactic body radiation therapy[J].Eur J Nucl Med Mol Imaging, 2024, 51(4):1097-1108.
|
73 |
Sun D, Rakesh G, Haswell CC, et al.A comparison of methods to harmonize cortical thickness measurements across scanners and sites[J].Neuroimage, 2022, 261:119509.
|
74 |
Choi YJ, Jeon KJ, Lee A, et al.Harmonization of robust radiomic features in the submandibular gland using multi-ultrasound systems:a preliminary study[J].Dentomaxillofac Radiol, 2023, 52(2):20220284.
|