1 |
罗渝昆, 杨振, 李盈盈. 人工智能辅助超声系统在浅表肿瘤良恶性鉴别诊断中的应用 [J/OL]. 中华医学超声杂志(电子版), 2023,20(5): 475-478.
|
2 |
LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015,521(7553): 436-444.
|
3 |
Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists [J]. Radiographics, 2017, 37(7): 2113-2131.
|
4 |
Gyftopoulos S, Lin D, Knoll F, et al. Artificial intelligence in musculoskeletal imaging: current status and future directions [J]. AJR Am J Roentgenol, 2019, 213(3): 506-513.
|
5 |
Guermazi A, Omoumi P, Tordjman M, et al. How AI may transform musculoskeletal imaging [J]. Radiology, 2024, 310(1): e230764.
|
6 |
Wu M, Chai Z, Qian G, et al. Development and evaluation of a deep learning algorithm for rib segmentation and fracture detection from multicenter chest CT images [J]. Radiol Artif Intell, 2021, 3(5):e200248.
|
7 |
Larson DB, Chen MC, Lungren MP, et al. Performance of a deeplearning neural network model in assessing skeletal maturity on pediatric hand radiographs [J]. Radiology, 2018, 287(1): 313-322.
|
8 |
Yasaka K, Akai H, Kunimatsu A, et al. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network [J]. Eur Radiol, 2020, 30(6): 3549-3557.
|
9 |
Chen W, Ayoub M, Liao M, et al. A fusion of VGG-16 and ViT models for improving bone tumor classification in computed tomography [J]. J Bone Oncol, 2023, 43: 100508.
|
10 |
Eweje FR, Bao B, Wu J, et al. Deep learning for classification of bone lesions on routine MRI [J]. EBioMedicine, 2021, 68: 103402.
|
11 |
Ernst F, Osburg J, Tüshaus L. SonoBox: development of a robotic ultrasound tomograph for the ultrasound diagnosis of paediatric forearm fractures [J]. Front Robot AI, 2024, 11: 1405169.
|
12 |
Albano D, Viglino U, Esposito F, et al. Quantitative and compositional MRI of the articular cartilage: a narrative review [J]. Tomography,2024, 10(7): 949-969.
|
13 |
Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: achieving high diagnostic performance for cartilage lesion detection [J]. Radiology, 2018, 289(1): 160-169.
|
14 |
Pedoia V, Norman B, Mehany SN, et al. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects [J]. J Magn Reson Imaging, 2019,49(2): 400-410.
|
15 |
Antico M, Sasazawa F, Dunnhofer M, et al. Deep learning-based femoral cartilage automatic segmentation in ultrasound imaging for guidance in robotic knee arthroscopy [J]. Ultrasound Med Biol, 2020,46(2): 422-435.
|
16 |
Molyneux P, Bowen C, Ellis R, et al. Evaluation of osteoarthritic features in peripheral joints by ultrasound imaging: a systematic review [J]. Osteoarthr Cartil Open, 2021, 3(3): 100194.
|
17 |
von Schacky CE, Sohn JH, Liu F, et al. Development and validation of a multitask deep learning model for severity grading of hip osteoarthritis features on radiographs [J]. Radiology, 2020, 295(1):136-145.
|
18 |
More S, Singla J. A generalized deep learning framework for automatic rheumatoid arthritis severity grading [J]. J Intell Fuzzy Syst, 2021,41(6): 7603-7614.
|
19 |
Hemalatha RJ, Vijaybaskar V, Thamizhvani TR. Automatic localization of anatomical regions in medical ultrasound images of rheumatoid arthritis using deep learning [J]. Proc Inst Mech Eng H, 2019, 233(6):657-667.
|
20 |
Andersen JKH, Pedersen JS, Laursen MS, et al. Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J].RMD Open, 2019, 5(1): e000891.
|
21 |
李雪兰, 王铭, 赵辰阳, 等. 人工智能在类风湿关节炎肌骨超声成像中的应用研究进展 [J/OL]. 中华医学超声杂志(电子版), 2023,20(12): 1300-1303.
|
22 |
Liu F, Guan B, Zhou Z, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning [J].Radiol Artif Intell, 2019, 1(3): 180091.
|
23 |
Singh V, Elamvazuthi I, Jeoti V, et al. Impacting clinical evaluation of anterior talofibular ligament injuries through analysis of ultrasound images [J]. Biomed Eng Online, 2016, 15: 13.
|
24 |
Chiu PH, Boudier-Révéret M, Chang SW, et al. Deep learning for detecting supraspinatus calcific tendinopathy on ultrasound images [J].J Med Ultrasound, 2022, 30(3): 196-202.
|
25 |
Ghosh S, Felfeliyan B, Zhou Y, et al. Ultrasound for automated classification of full-thickness rotator cuff tendon tears using deep learning [C]// Proceedings of the 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Piscataway: IEEE, 2024: 1-4.
|
26 |
Kapinski N, Zielinski J, Borucki BA, et al. Estimating Achilles tendon healing progress with convolutional neural networks [C]// Medical Image Computing and Computer Assisted Intervention-MICCAI 2018:Proceedings of the 21st International Conference. Cham: Springer,2018: 949-957.
|
27 |
Gu S, Wang L, Han R, et al. Detection of sarcopenia using deep learning-based artificial intelligence body part measure system(AIBMS) [J]. Front Physiol, 2023, 14: 1092352.
|
28 |
Yi J, Shin Y, Hahn S, et al. Deep learning based sarcopenia prediction from shear-wave ultrasonographic elastography and gray scale ultrasonography of rectus femoris muscle [J]. Sci Rep, 2022, 12(1):3596.
|
29 |
Burlina P, Billings S, Joshi N, et al. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods [J]. PLoS One, 2017, 12(8): e0184059.
|
30 |
Wang B, Perronne L, Burke C, et al. Artificial intelligence for classification of soft-tissue masses at US [J]. Radiol Artif Intell, 2021,3(1): e200125.
|
31 |
Xu R, Tang J, Li C, et al. Deep learning-based artificial intelligence for assisting diagnosis, assessment and treatment in soft tissue sarcomas[J]. Meta-Radiology, 2024, 2(2): 100069.
|
32 |
Balsiger F, Steindel C, Arn M, et al. Segmentation of peripheral nerves from magnetic resonance neurography: a fully-automatic, deep learning-based approach [J]. Front Neurol, 2018, 9: 777.
|
33 |
Smistad E, Johansen KF, Iversen DH, et al. Highlighting nerves and blood vessels for ultrasound-guided axillary nerve block procedures using neural networks [J]. J Med Imaging (Bellingham), 2018, 5(4):044004.
|
34 |
Yeh CL, Wu CH, Hsiao MY, et al. Real-time automated segmentation of median nerve in dynamic ultrasonography using deep learning [J].Ultrasound Med Biol, 2023, 49(5): 1129-1136.
|
35 |
Huang C, Zhou Y, Tan W, et al. Applying deep learning in recognizing the femoral nerve block region on ultrasound images [J]. Ann Transl Med, 2019, 7(18): 453.
|
36 |
Liu C, Liu F, Wang L, et al. Segmentation of nerve on ultrasound images using deep adversarial network [J]. Int J Innov Comput Inform Control, 2018, 14: 53-64.
|
37 |
Wu CH, Syu WT, Lin MT, et al. Automated segmentation of median nerve in dynamic sonography using deep learning: evaluation of model performance [J]. Diagnostics (Basel), 2021, 11(10): 1893.
|
38 |
Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave elastography: basic physics and musculoskeletal applications [J].Radiographics, 2017, 37(3): 855-870.
|
39 |
Jiang Y, Liu X, Jiang ZJ. From morphology to therapeutic strategies:exploring new applications of ultrasound for diabetic peripheral neuropathy diagnosis and management [J]. J Ultrasound Med, 2024,43(12): 2231-2245.
|
40 |
Sabeghi P, Kinkar KK, Castaneda GDR, et al. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors [J]. Front Radiol, 2024, 4: 1332535.
|
41 |
Park CW, Oh SJ, Kim KS, et al. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: system development and validation [J]. PLoS One, 2022,17(2): e0264140.
|
42 |
Cigdem O, Deniz CM. Artificial intelligence in knee osteoarthritis: a comprehensive review for 2022 [J]. Osteoarthr Imaging, 2023, 3(3):100161.
|
43 |
Langlotz CP. The future of AI and informatics in radiology: 10 predictions [J]. Radiology, 2023, 309(1): e231114.
|
44 |
Whang SE, Roh Y, Song H, et al. Data collection and quality challenges in deep learning: a data-centric AI perspective [J]. VLDB J,2023, 32(4): 791-813.
|
45 |
Yogendra PM, Goh AGW, Yee SY, et al. Accuracy of radiologists and radiology residents in detection of paediatric appendicular fractures with and without artificial intelligence [J]. BMJ Health Care Inform,2024, 31(1): e101091.
|