1 |
Goodfellow I, Bengio Y, Courville A, et al.Deep learning[M].Cambridge: MIT press, 2016.
|
2 |
Liang B, Peng F, Luo D, et al.Automatic segmentation of 15 critical anatomical labels and measurements of cardiac axis and cardiothoracic ratio in fetal four chambers using nnU-NetV2[J].BMC Med Inform Decis Mak, 2024, 24(1): 128.
|
3 |
Chen X, Xu X, Tong L, et al.Automatic diagnosis of early pregnancy fetal nasal bone development based on complex mid-sagittal section ultrasound imaging[J].Neurocomputing, 2025, 633: 129773.
|
4 |
Alasmawi H, Bricker L, Yaqub M.FUSC: fetal ultrasound semantic clustering of second-trimester scans using deep self-supervised learning[J].Ultrasound Med Biol, 2024, 50(5): 703-711.
|
5 |
Pu B, Li K, Li S, et al.Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT[J].IEEE T Ind Inform,2021, 17(11): 7771-7780.
|
6 |
Tian Y, Ye Q, Doermann D.Yolov12: Attention-centric real-time object detectors[DB/OL].arXiv preprint arXiv: 2502.12524,2025.
|
7 |
Xie HN, Wang N, He M, et al.Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal[J].Ultrasound Obstet Gynecol, 2020, 56(4): 579-587.
|
8 |
Ramirez Zegarra R, Ghi T.Use of artificial intelligence and deep learning in fetal ultrasound imaging[J].Ultrasound Obstet Gynecol,2023, 62(2): 185-194.
|
9 |
曾晴, 文华轩, 袁鹰, 等.胎儿颅脑五横切面法的临床应用[J/OL].中华医学超声杂志(电子版), 2024, 21(3): 243-250.
|
10 |
Wang X, Liu Z, Du Y, et al.Recognition of fetal facial ultrasound standard plane based on texture feature fusion[J].Comput Math Methods Med, 2021, 2021(1): 6656942.
|
11 |
Xue H, Yu W, Liu Z, et al.Early pregnancy fetal facial ultrasound standard plane-assisted recognition algorithm[J].J Ultrasound Med,2023, 42(8): 1859-1880.
|
12 |
Li F, Li P, Wu X, et al.FHUSP-NET: a multi-task model for fetal heart ultrasound standard plane recognition and key anatomical structures detection[J].Comput Bio Med, 2024, 168: 107741.
|
13 |
Pu B, Li K, Chen J, et al.HFSCCD: a hybrid neural network for fetal standard cardiac cycle detection in ultrasound videos[J].IEEE J Biomed Health Inform, 2024, 28(5): 2943-2954.
|
14 |
Dozen A, Komatsu M, Sakai A, et al.Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information[J].Biomolecules, 2020, 10(11):1526.
|
15 |
Stoean R, Iliescu D, Stoean C, et al.Deep learning for the detection of frames of interest in fetal heart assessment from first trimester ultrasound[C].International Work-Conference on Artificial and Natural Neural Networks, 2021.
|
16 |
Cho H, Kim D, Chang S, et al.A system-on-chip solution for deep learning-based automatic fetal biometric measurement[J].Expert Systems with Applications, 2024, 237: 121482.
|
17 |
Zeng W, Luo J, Cheng J, et al.Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network[J].Med Phys, 2022,49(8): 5081-5092.
|
18 |
Płotka S, Pustelnik K, Szenejko P, et al.Direct estimation of fetal biometry measurements from ultrasound video scans through deep learning[J].Am J Obstet Gynecol MFM, 2025, 7(4): 101623.
|
19 |
Slimani S, Hounka S, Mahmoudi A, et al.Fetal biometry and amniotic fluid volume assessment end-to-end automation using deep learning[J].Nat Commun, 2023, 14(1): 7047.
|
20 |
Yu L, Guo Y, Wang Y, et al.Determination of fetal left ventricular volume based on two-dimensional echocardiography[J].J Healthc Eng,2017: 4797315.
|
21 |
Dan T, Chen X, He M, et al.DeepGA for automatically estimating fetal gestational age through ultrasound imaging[J].Artif Intell Med,2023, 135: 102453.
|
22 |
Lee C, Willis A, Chen C, et al.Development of a machine learning model for sonographic assessment of gestational age[J].JAMA Netw Open, 2023, 6(1): e2248685.
|
23 |
Sahli H, Mouelhi A, Ben Slama A, et al.Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images[J].J Med Eng Technol, 2019, 43(5): 279-286.
|
24 |
Shinde K, Thakare A.Deep hybrid learning method for classification of fetal brain abnormalities[C].2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), 2021.
|
25 |
Qi Y, Cai J, Lu J, et al.Multi-center study on deep learningassisted detection and classification of fetal central nervous system anomalies using ultrasound imaging[DB/OL].arXiv preprint arXiv:2501.02000,2025.
|
26 |
Gao Z, Ding Y, Zhu N, et al.Automated screening network for fetal closed spina bifida with semantic enhancement and projected attention[J].IEEE J Biomed Health Inform, 2024.
|
27 |
Arnaout R, Curran L, Zhao Y, and et al.An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease[J].Nat Med, 2021, 27(5): 882-891.
|
28 |
Lu Y, Tan G, Pu B, et al.SKGC: a general semantic-level knowledge guided classification framework for fetal congenital heart disease[J].IEEE J Biomed Health Inform, 2024, 28(10): 6105-6116.
|
29 |
Nurmaini S, Partan RU, Bernolian N, et al.Deep learning for improving the effectiveness of routine prenatal screening for major congenital heart diseases[J].J Clin Med, 2022, 11(21): 6454.
|
30 |
Li Y, Cai P, Huang Y, et al.Deep learning based detection and classification of fetal lip in ultrasound images[J].J Perinat Med, 2024,52(7): 769-777.
|
31 |
Nantha O, Sathanarugsawait B, Praneetpolgrang P.Cleft lip and palate classification through vision transformers and siamese neural networks[J].J Imaging, 2024, 10(11): 271.
|
32 |
郭文佳, 罗丹丹, 徐荟, 等.新型智能产前超声技术SFA 自动识别与获取胎儿标准切面[J].中国医学影像技术, 2023, 39(1): 65-69.
|
33 |
Guo W, Li S, Yu X, et al.Artificial intelligence in prenatal ultrasound:clinical application and prospect[J].Advanced Ultrasound in Diagosis and Therapy(AUDT), 2023, 7(2): 82-90.
|
34 |
彭桂艳, 谭莹, 曾晴, 等.人工智能质控在提高胎儿上腹部水平横切面标准率中的应用价值[J/OL].中国产前诊断杂志(电子版),2022, 14(4): 6-10.
|