切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (04) : 300 -304. doi: 10.3877/cma.j.issn.1672-6448.2025.04.004

专家论坛

产前超声人工智能应用研究
余翔1, 袁鹰1, 李胜利1,()   
  1. 1. 528000 深圳,南方医科大学深圳妇幼保健院超声科
  • 收稿日期:2025-03-26 出版日期:2025-04-01
  • 通信作者: 李胜利
  • 基金资助:
    国家重点研发计划项目(2022YFF0606300)

Applications of artificial intelligence in prenatal ultrasound

Xiang Yu, Ying Yuan, Shengli Li()   

  • Received:2025-03-26 Published:2025-04-01
  • Corresponding author: Shengli Li
引用本文:

余翔, 袁鹰, 李胜利. 产前超声人工智能应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 300-304.

Xiang Yu, Ying Yuan, Shengli Li. Applications of artificial intelligence in prenatal ultrasound[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(04): 300-304.

图1 人工智能模型自动获取的胎儿小脑水平横切面。图a 为智能采集的胎儿小脑水平横切面;图b为智能采集过程重获取的关键结构检测的结果 注:S 为颅骨光环;BM 为脑中线;CSP 为透明隔腔;T 为丘脑;LS 为外侧裂
图2 产前超声智能工作站胎儿生长参数自动获取示例。图a ~d 分别为胎儿头围、体重、腹围、股骨长自动测量结果 注:SD 为标准差;P 为百分位数
图3 胎儿脐带腹壁入口处横切面质控示例。人工智能模型自动对脊柱、插入脐带处等结构的清晰程度进行判断,并获得质控总体评价,图a 为待质控的胎儿脐带腹壁入口处横切面;图b 为结构显示情况解析及质控总体评价
1
Goodfellow I, Bengio Y, Courville A, et al.Deep learning[M].Cambridge: MIT press, 2016.
2
Liang B, Peng F, Luo D, et al.Automatic segmentation of 15 critical anatomical labels and measurements of cardiac axis and cardiothoracic ratio in fetal four chambers using nnU-NetV2[J].BMC Med Inform Decis Mak, 2024, 24(1): 128.
3
Chen X, Xu X, Tong L, et al.Automatic diagnosis of early pregnancy fetal nasal bone development based on complex mid-sagittal section ultrasound imaging[J].Neurocomputing, 2025, 633: 129773.
4
Alasmawi H, Bricker L, Yaqub M.FUSC: fetal ultrasound semantic clustering of second-trimester scans using deep self-supervised learning[J].Ultrasound Med Biol, 2024, 50(5): 703-711.
5
Pu B, Li K, Li S, et al.Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT[J].IEEE T Ind Inform,2021, 17(11): 7771-7780.
6
Tian Y, Ye Q, Doermann D.Yolov12: Attention-centric real-time object detectors[DB/OL].arXiv preprint arXiv: 2502.12524,2025.
7
Xie HN, Wang N, He M, et al.Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal[J].Ultrasound Obstet Gynecol, 2020, 56(4): 579-587.
8
Ramirez Zegarra R, Ghi T.Use of artificial intelligence and deep learning in fetal ultrasound imaging[J].Ultrasound Obstet Gynecol,2023, 62(2): 185-194.
9
曾晴, 文华轩, 袁鹰, 等.胎儿颅脑五横切面法的临床应用[J/OL].中华医学超声杂志(电子版), 2024, 21(3): 243-250.
10
Wang X, Liu Z, Du Y, et al.Recognition of fetal facial ultrasound standard plane based on texture feature fusion[J].Comput Math Methods Med, 2021, 2021(1): 6656942.
11
Xue H, Yu W, Liu Z, et al.Early pregnancy fetal facial ultrasound standard plane-assisted recognition algorithm[J].J Ultrasound Med,2023, 42(8): 1859-1880.
12
Li F, Li P, Wu X, et al.FHUSP-NET: a multi-task model for fetal heart ultrasound standard plane recognition and key anatomical structures detection[J].Comput Bio Med, 2024, 168: 107741.
13
Pu B, Li K, Chen J, et al.HFSCCD: a hybrid neural network for fetal standard cardiac cycle detection in ultrasound videos[J].IEEE J Biomed Health Inform, 2024, 28(5): 2943-2954.
14
Dozen A, Komatsu M, Sakai A, et al.Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information[J].Biomolecules, 2020, 10(11):1526.
15
Stoean R, Iliescu D, Stoean C, et al.Deep learning for the detection of frames of interest in fetal heart assessment from first trimester ultrasound[C].International Work-Conference on Artificial and Natural Neural Networks, 2021.
16
Cho H, Kim D, Chang S, et al.A system-on-chip solution for deep learning-based automatic fetal biometric measurement[J].Expert Systems with Applications, 2024, 237: 121482.
17
Zeng W, Luo J, Cheng J, et al.Efficient fetal ultrasound image segmentation for automatic head circumference measurement using a lightweight deep convolutional neural network[J].Med Phys, 2022,49(8): 5081-5092.
18
Płotka S, Pustelnik K, Szenejko P, et al.Direct estimation of fetal biometry measurements from ultrasound video scans through deep learning[J].Am J Obstet Gynecol MFM, 2025, 7(4): 101623.
19
Slimani S, Hounka S, Mahmoudi A, et al.Fetal biometry and amniotic fluid volume assessment end-to-end automation using deep learning[J].Nat Commun, 2023, 14(1): 7047.
20
Yu L, Guo Y, Wang Y, et al.Determination of fetal left ventricular volume based on two-dimensional echocardiography[J].J Healthc Eng,2017: 4797315.
21
Dan T, Chen X, He M, et al.DeepGA for automatically estimating fetal gestational age through ultrasound imaging[J].Artif Intell Med,2023, 135: 102453.
22
Lee C, Willis A, Chen C, et al.Development of a machine learning model for sonographic assessment of gestational age[J].JAMA Netw Open, 2023, 6(1): e2248685.
23
Sahli H, Mouelhi A, Ben Slama A, et al.Supervised classification approach of biometric measures for automatic fetal defect screening in head ultrasound images[J].J Med Eng Technol, 2019, 43(5): 279-286.
24
Shinde K, Thakare A.Deep hybrid learning method for classification of fetal brain abnormalities[C].2021 International Conference on Artificial Intelligence and Machine Vision (AIMV), 2021.
25
Qi Y, Cai J, Lu J, et al.Multi-center study on deep learningassisted detection and classification of fetal central nervous system anomalies using ultrasound imaging[DB/OL].arXiv preprint arXiv:2501.02000,2025.
26
Gao Z, Ding Y, Zhu N, et al.Automated screening network for fetal closed spina bifida with semantic enhancement and projected attention[J].IEEE J Biomed Health Inform, 2024.
27
Arnaout R, Curran L, Zhao Y, and et al.An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease[J].Nat Med, 2021, 27(5): 882-891.
28
Lu Y, Tan G, Pu B, et al.SKGC: a general semantic-level knowledge guided classification framework for fetal congenital heart disease[J].IEEE J Biomed Health Inform, 2024, 28(10): 6105-6116.
29
Nurmaini S, Partan RU, Bernolian N, et al.Deep learning for improving the effectiveness of routine prenatal screening for major congenital heart diseases[J].J Clin Med, 2022, 11(21): 6454.
30
Li Y, Cai P, Huang Y, et al.Deep learning based detection and classification of fetal lip in ultrasound images[J].J Perinat Med, 2024,52(7): 769-777.
31
Nantha O, Sathanarugsawait B, Praneetpolgrang P.Cleft lip and palate classification through vision transformers and siamese neural networks[J].J Imaging, 2024, 10(11): 271.
32
郭文佳, 罗丹丹, 徐荟, 等.新型智能产前超声技术SFA 自动识别与获取胎儿标准切面[J].中国医学影像技术, 2023, 39(1): 65-69.
33
Guo W, Li S, Yu X, et al.Artificial intelligence in prenatal ultrasound:clinical application and prospect[J].Advanced Ultrasound in Diagosis and Therapy(AUDT), 2023, 7(2): 82-90.
34
彭桂艳, 谭莹, 曾晴, 等.人工智能质控在提高胎儿上腹部水平横切面标准率中的应用价值[J/OL].中国产前诊断杂志(电子版),2022, 14(4): 6-10.
No related articles found!
阅读次数
全文


摘要