切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2025, Vol. 22 ›› Issue (05) : 383 -387. doi: 10.3877/cma.j.issn.1672-6448.2025.05.001

述评

人工智能与超声质控的深度融合:赋能精准医疗与同质化发展
姜玉新1,(), 王红燕1, 李建初1, 赵慧佳1   
  1. 1. 100730 中国医学科学院 北京协和医学院 北京协和医院超声医学科
  • 收稿日期:2025-04-15 出版日期:2025-05-01
  • 通信作者: 姜玉新

Deep integration of artificial intelligence and ultrasound quality control: empowering precision medicine and homogeneous development

Yuxin Jiang(), Hongyan Wang, Jianchu Li, Huijia Zhao   

  • Received:2025-04-15 Published:2025-05-01
  • Corresponding author: Yuxin Jiang
引用本文:

姜玉新, 王红燕, 李建初, 赵慧佳. 人工智能与超声质控的深度融合:赋能精准医疗与同质化发展[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 383-387.

Yuxin Jiang, Hongyan Wang, Jianchu Li, Huijia Zhao. Deep integration of artificial intelligence and ultrasound quality control: empowering precision medicine and homogeneous development[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2025, 22(05): 383-387.

1
姜玉新 王红燕, 李建初, 等.聚焦质控指标体系 推进超声质量提升 [J/OL].中华医学超声杂志(电子版), 2024, 21(7): 647-652.
2
国家卫生健康委员会.2023 年国家医疗服务与质量安全报告 [R].北京: 科学技术文献出版社, 2024: 459-460.
3
Yu KH, Beam AL, Kohane IS.Artificial intelligence in healthcare [J].Nat Biomed Eng, 2018, 2(10): 719-731.
4
Krishna TB, Kokil P.Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models [J].Expert Syst Appl, 2024, 238: 122153.
5
Mor-Avi V, Khandheria B, Klempfner R, et al.Real-time artificial intelligence-based guidance of echocardiographic imaging by novices: image quality and suitability for diagnostic interpretation and quantitative analysis [J].Circ Cardiovasc Imaging, 2023, 16(11):e015569.
6
Zhao CK, Ren TT, Yin YF, et al.A comparative analysis of two machine learning-based diagnostic patterns with thyroid imaging reporting and data system for thyroid nodules: diagnostic performance and unnecessary biopsy rate [J].Thyroid, 2021, 31(3): 470-481.
7
Christiansen F, Konuk E, Ganeshan AR, et al.International multicenter validation of AI-driven ultrasound detection of ovarian cancer [J].Nat Med, 2025, 31(1): 189-196.
8
Chen H, Wu L, Dou Q, et al.Ultrasound standard plane detection using a composite neural network framework [J].IEEE Trans Cybern,2017, 47(6): 1576-1586.
9
Tan Y, Peng Y, Guo L, et al.Cost-effectiveness analysis of AI-based image quality control for perinatal ultrasound screening [J].BMC Med Educ, 2024.24(1): 1437.
10
Song Y, Zhong Z, Zhao B, et al.Medical ultrasound image quality assessment for autonomous robotic screening [J].IEEE Robot Autom Lett, 2022, 7(3): 6290-6296.
11
Mitchell S, Nikolopoulos M, El-Zarka A, et al.Artificial intelligence in ultrasound diagnoses of ovarian cancer: a systematic review and metaanalysis [J].Cancers (Basel), 2024, 16(2): 422.
12
Gu Y, Xu W, Lin B, et al.Deep learning based on ultrasound images assists breast lesion diagnosis in China: a multicenter diagnostic study[J].Insights Imaging, 2022, 13(1): 124.
13
Guldogan N, Taskin F, Icten GE, et al.Artificial intelligence in BIRADS categorization of breast lesions on ultrasound: can we omit excessive follow-ups and biopsies? [J].Acad Radiol, 2024, 31(6):2194-2202.
14
Hamyoon H, Yee Chan W, Mohammadi A, et al.Artificial intelligence,BI-RADS evaluation and morphometry: a novel combination to diagnose breast cancer using ultrasonography, results from multicenter cohorts [J].Eur J Radiol, 2022, 157: 110591.
15
García-Mejido JA, Galán-Paez J, Solis-Martín D, et al.Ultrasound diagnosis of pelvic organ prolapse using artificial intelligence [J].J Clin Med, 2025, 14(11): 3634.
16
Lin M, He X, Guo H, et al.Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations [J].Ultrasound Obstet Gynecol, 2022, 59(3): 304-316.
17
Ungureanu A, Marcu AS, Patru CL, et al.Learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE)-a study protocol for developing an automated intelligent decision support system for early fetal echocardiography [J].BMC Pregnancy Childbirth, 2023, 23(1): 20.
No related articles found!
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?