| 1 |
国家卫生健康委. 原发性肝癌诊疗指南(2024年版)[EB/OL]. (2024-03-21)[2025-07-09].
|
| 2 |
徐辉雄, 孙丽萍, 金晔. 消化系统疾病超声入门[M]. 上海: 上海科学技术出版社, 2021.
|
| 3 |
徐辉雄, 张一峰. 肝胆胰脾疾病超声造影[M]. 上海: 上海科学普及出版社, 2019.
|
| 4 |
Dietrich CF, Nolsøe CP, Barr RG, et al. Guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS) in the liver-update 2020 WFUMB in cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS [J]. Ultrasound Med Biol, 2020, 46(10): 2579-2604.
|
| 5 |
Lu D, Wang LF, Han H, et al. Prediction of microvascular invasion in hepatocellular carcinoma with conventional ultrasound, Sonazoid-enhanced ultrasound, and biochemical indicator: a multicenter study[J]. Insights Imaging, 2024, 15(1): 261.
|
| 6 |
Hu XY, Sun YK, Miao Y, et al. Preoperative identification of hepatocellular carcinoma from focal liver lesions ≤ 20 mm in high-risk patients using clinical and contrast-enhanced ultrasound features [J]. Eur J Radiol, 2025, 187: 112076.
|
| 7 |
中华医学会超声医学分会, 中国医师协会外科医师分会, 中国医师协会介入医师分会, 等. 肝移植超声临床实践指南(2023版)[J]. 中华医学杂志, 2023, 103(31): 2365-2388.
|
| 8 |
Chau SS, Beutler BD, Grant EG, et al. Ultrasound innovations in abdominal radiology: multiparametic imaging in liver transplantation [J]. Abdom Radiol (NY), 2025, 50(2): 679-692.
|
| 9 |
刘红, 徐辉雄. 超声设备及检查技术[M]. 上海: 同济大学出版社, 2020.
|
| 10 |
国家超声医学质量控制中心, 北京市超声医学质量控制和改进中心. 超声医学质量控制管理规范[M]. 北京: 人民卫生出版社, 2022.
|
| 11 |
中华医学会超声医学分会, 中国研究型医院学会肿瘤介入专业委员会, 国家卫生和健康委员会能力建设和继续教育中心超声医学专家委员会. 肝病超声诊断指南[J]. 中华肝脏病杂志, 2021, 29(5): 385-402.
|
| 12 |
Strauss S, Gavish E, Gottlieb P, et al. Interobserver and intraobserver variability in the sonographic assessment of fatty liver[J]. AJR Am J Roentgenol, 2007, 189(6): W320-W323.
|
| 13 |
Gao J, Lee R, Trujillo M. Reliability of performing multiparametric ultrasound in adult livers [J]. J Ultrasound Med, 2022, 41(3): 699-711.
|
| 14 |
Hirata Y, Kusunose K. AI in echocardiography: state-of-the-art automated measurement techniques and clinical applications [J]. JMA J, 2025, 8(1): 141-150.
|
| 15 |
Lee C, Willis A, Chen C, et al. Development of a machine learning model for sonographic assessment of gestational age [J]. JAMA Netw Open, 2023, 6(1): e2248685.
|