切换至 "中华医学电子期刊资源库"
综述

人工智能在超声诊断冠心病中的应用现状

  • 谢圆圆 ,
  • 李冬梅 ,
  • 毛鑫乐 ,
  • 邓燕 , 2,
展开
  • 1.610500 成都医学院
  • 2.610072 电子科技大学附属医院•四川省人民医院心血管超声及心功能科 超声心脏电生理学与生物力学四川省重点实验室
通信作者:邓燕,Emai:

Copy editor: 汪荣

收稿日期: 2023-09-03

  网络出版日期: 2024-04-25

基金资助

四川省自然科学基金(2023NSFSC0038)

版权

未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计,除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。本刊为电子期刊,以网刊形式出版。

Application of artificial intelligence in ultrasonic diagnosis of coronary heart disease

  • Yuanyuan Xie ,
  • Dongmei Li ,
  • Xinle Mao
Expand

Received date: 2023-09-03

  Online published: 2024-04-25

Copyright

Copyright by Chinese Medical Association No content published by the journals of Chinese Medical Association may be reproduced or abridged without authorization. Please do not use or copy the layout and design of the journals without permission. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Medical Association or the Editorial Board, unless this is clearly specified.

摘要

冠状动脉粥样硬化性心脏病简称冠心病,占我国心脏病患者总数的50%以上。冠心病可导致心肌缺血、坏死以及心力衰竭,是死亡率最高的疾病之一,并呈现年轻化趋势。因此,对冠心病的早期诊断、药物或介入治疗的疗效评价显得尤为重要。近年来,超声影像技术的研发及仪器的不断升级为冠心病的评价提供了有效的工具,然而超声心动图的学习曲线通常较长,且超声检查存在不可避免的局限性,如操作者经验依赖性强,观察者间及观察者内诊断结果差异性大等。

本文引用格式

谢圆圆 , 李冬梅 , 毛鑫乐 , 邓燕 . 人工智能在超声诊断冠心病中的应用现状[J]. 中华医学超声杂志(电子版), 2024 , 21(02) : 170 -174 . DOI: 10.3877/cma.j.issn.1672-6448.2024.02.011

1
Writing committee of the report on cardiovascular health and diseases in china. Report on cardiovascular health and diseases in China 2021: an updated summary[J]. Biomed Environ Sci, 2022, 35(7): 573-603.

2
Liu S, Li Y, Zeng X, et al. Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 global burden of disease study[J]. JAMA Cardiol, 2019, 4(4): 342-352.

3
刘梦怡, 吴伟春. 人工智能在超声心动图中的应用现状及进展[J/OL].中华医学超声杂志(电子版), 2021, 18(2): 216-219.

4
赵娜, 郑权, 张瑞芳. 超声医学质量控制与区域医疗合作信息化建设初探[J/OL].中华医学超声杂志(电子版), 2020, 17(7): 614-618.

5
Tseng AS, Lopez-Jimenez F, Pellikka PA. Future guidelines for artificial intelligence in echocardiography[J]. J Am Soc Echocardiogr, 2022, 35(8): 878-882.

6
Laumer F, Di Vece D, Cammann VL, et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating Takotsubo syndrome from myocardial infarction[J]. JAMA Cardiol, 2022, 7(5): 494-503.

7
Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023[J]. N Engl J Med, 2023, 388(13): 1201-1208.

8
van der Velden BHM, Kuijf HJ, Gilhuijs KGAet al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis[J]. Med Image Anal, 2022, 79: 102470.

9
Coulter SA, Campos K. Artificial intelligence in echocardiography[J]. Tex Heart Inst J, 2022, 49(2): e217671.

10
Watson X, D'Souza J, Cooper D, et al. Artificial intelligence in cardiology: fundamentals and applications[J]. Intern Med J, 2022, 52(6): 912-920.

11
Chu WK, Raeside DE. Fourier analysis of the echocardiogram[J]. Phys Med Biol, 1978, 23(1): 100-105.

12
Kazuo K, Kimura T, Ishihara M, et al. JCS 2018 guideline on diagnosis and treatment of acute coronary syndrome[J]. Circ J, 2019, 83: 1085-1196.

13
Leung KY, Bosch JG. Localized shape variations for classifying wall motion in echocardiograms[J]. Med Image Comput Comput Assist Interv, 2007, 10(Pt 1): 52-59.

14
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images[J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.

15
Huang MS, Wang CS, Chiang JH, et al. Automated recognition of regional wall motion abnormalities through deep neural network interpretation of transthoracic echocardiography[J]. Circulation, 2020, 142(16): 1510-1520.

16
Muraki R, Teramoto A, Sugimoto K, et al. Automated detection scheme for acute myocardial infarction using convolutional neural network and long short-term memory[J]. PLoS One, 2022, 17(2): e0264002.

17
Lin X, Yang F, Chen Y, et al. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction[J]. Front Cardiovasc Med, 2022, 9: 903660.

18
王伟. 超声心动图在冠心病患者中的诊断效果[J]. 当代医学, 2022, 28(20): 77-79.

19
Federico M, Poilvert N, Abraham T, et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert[J]. Circ Cardiovasc Imaging, 2019, 12(9): e009303.

20
Moal O, Roger E, Lamouroux A, et al. Explicit and automatic ejection fraction assessment on 2D cardiac ultrasound with a deep learning-based approach[J]. Comput Biol Med, 2022, 146: 105637.

21
Bombelli M, Vanoli J, Facchetti R, et al. Impact of the increase in left ventricular mass on the risk of long-term cardiovascular mortality: a prospective cohort study[J]. Hypertension, 2023, 80(6): 1321-1330.

22
Streiff C, Zhu M, Panosian J, et al. Comprehensive evaluation of cardiac function and detection of myocardial infarction based on a semi-automated analysis using full-volume real time three-dimensional echocardiography[J]. Echocardiography, 2015, 32(2): 332-338.

23
Volpato V, Mor-Avi V, Narang A, et al. Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass[J]. Echocardiography, 2019, 36(2): 312-319.

24
Woodward W, Dockerill C, McCourt A, et al. Real-world performance and accuracy of stress echocardiography: the EVAREST observational multi-centre study[J]. Eur Heart J Cardiovasc Imaging, 2022, 23(5): 689-698.

25
Upton R, Mumith A, Beqiri A, et al. Automated echocardiographic detection of severe coronary artery disease using artificial intelligence[J]. JACC Cardiovasc Imaging, 2022, 15(5): 715-727.

26
O'Driscoll JM, Hawkes W, Beqiri A, et al. Left ventricular assessment with artificial intelligence increases the diagnostic accuracy of stress echocardiography[J]. Eur Heart J Open, 2022, 2(5): oeac059.

27
Li Y, Chahal N, Senior R, et al. Reproducible computer-assisted quantification of myocardial perfusion with contrast-enhanced ultrasound[J]. Ultrasound Med Biol, 2017, 43(10): 2235-2246.

28
Li M, Zeng D, Xie Q, et al. A deep learning approach with temporal consistency for automatic myocardial segmentation of quantitative myocardial contrast echocardiography[J]. Int J Cardiovasc Imaging, 2021, 37(6): 1967-1978.

29
Mendizabal-Ruiz EG, Rivera M, Kakadiaris IA. Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach[J]. Med Image Anal, 2013, 17(6): 649-670.

30
Nishi T, Yamashita R, Imura S, et al. Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease[J]. Int J Cardiol, 2021, 333: 55-59.

31
Sheet D, Karamalis A, Eslami A, et al. Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound[J]. Med Image Anal, 2014, 18(1): 103-117.

32
Kang SJ, Ahn JM, Han S, et al. Multimodality imaging of attenuated plaque using grayscale and virtual histology intravascular ultrasound and optical coherent tomography[J]. Catheter Cardiovasc Interv, 2016, 88(1): E1-E11.

33
Otsuka F, Sakakura K, Yahagi K, et al. Has our understanding of calcification in human coronary atherosclerosis progressed?[J]. Arterioscler Thromb Vasc Biol, 2014, 34(4): 724-736.

34
Cho H, Kang SJ, Min HS, et al. Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease[J]. Atherosclerosis, 2021, 324: 69-75.

文章导航

/