2024 , Vol. 21 >Issue 10: 978 - 985
DOI: https://doi.org/10.3877/cma.j.issn.1672-6448.2024.10.008
左束支传导阻滞性心肌病心脏电-机械重构的实验研究
Copy editor: 汪荣
收稿日期: 2024-07-19
网络出版日期: 2024-12-23
基金资助
国家自然科学基金面上项目(81771844,82371981)2022年度南京市卫生科技发展专项资金资助项目(SA2053202202)
版权
Electrical-mechanical remodeling in left bundle branch block-induced cardiomyopathy:An experimental study
Received date: 2024-07-19
Online published: 2024-12-23
Copyright
目的
应用心电参数及心脏做功参数评估左束支传导阻滞性心肌病(LBBB-CM)的心脏电-机械重构及其对心脏功能的影响。
方法
选取14只健康比格犬,于麻醉状态下通过射频消融左束支主干构建左束支传导阻滞(LBBB)模型。采集造模前及造模后12个月的心电图、超声心动图并对心电参数及心肌结构和功能参数进行分析。随机选取7只LBBB犬及7只同龄正常对照犬进行心脏解剖及病理学分析,采用Masson染色法分析心内膜胶原含量。依据造模后12个月时LBBB犬的左心室射血分数(LVEF),将14只LBBB犬分为LVEF保留组(LVEF≥50%)9只与LVEF下降组(LVEF<50%)5只,分析两组间电-机械重构差异及心电参数、心肌做功参数与心功能参数的相关性。
结果
相较于基础状态,LBBB犬在造模后12个月左心室舒张末期及收缩末期容积显著增大(P均<0.01),LVEF显著降低[基础状态(62.05±3.26)% vs 造模后12个月(49.72±5.93)%,P<0.001]。左心室心肌应变及做功参数分析显示,LBBB犬造模后12个月左心室整体纵向应变值(GLS)及整体心肌做功效率(GWE)较基础状态显著降低(P均<0.05);整体有用功(GCW)和整体无用功(GWW)显著升高(P均<0.001)。心内膜胶原含量定量分析显示,与对照犬相比,LBBB犬左心室各个节段心内膜胶原纤维体积分数(CVF)显著升高(P均<0.05)。分组分析结果中,LVEF下降组的心电图QRS波总面积显著大于LVEF保留组[LVEF保留组(665.02±147.44) mV·ms vs LVEF下降组(979.05±331.17)mV·ms,P<0.05]。与LVEF保留组相比,LVEF下降组左心室收缩末期容积(LVESV)更大(P<0.05);前间隔及室间隔的节段做功指数(SMW)及室间隔的节段心肌做功效率(SWE)更低[前间隔SMW:LVEF保留组(1363.22±495.37)mmHg% vs LVEF下降组(557.20±572.07)mmHg%,P=0.02;室间隔SMW:LVEF保留组(920.78±473.25)mmHg% vs LVEF下降组(334.60±324.47)mmHg%,P=0.03;室间隔SWE:LVEF保留组(83.11±10.33)% vs LVEF下降组(61.20±22.68)%,P=0.03],室间隔的节段无用功(SWW)更高[LVEF保留组(325.22±200.96)% vs LVEF下降组(763.60±411.08) mmHg%,P=0.02]。相关性分析提示,QRS波总面积与LVEF呈负相关(r=-0.67,P<0.01);室间隔中段SWW与LVEF呈负相关(r=-0.78,P<0.01),室间隔中段SWE与LVEF呈正相关(r=0.64,P=0.01)。
结论
LBBB非良性心律失常,所引起心脏电-机械重构与心功能下降有关,且该过程伴随着严重的心内膜纤维化,导致心肌病的发生、发展。室间隔功能障碍可能是LBBB致心功能障碍的始动因素。
陈芬 , 葛贝贝 , 王小贤 , 李明霞 , 徐芳 , 史坚 , 郭冠军 , 方爱娟 , 史中青 , 戚占如 , 陈慧 , 姚静 . 左束支传导阻滞性心肌病心脏电-机械重构的实验研究[J]. 中华医学超声杂志(电子版), 2024 , 21(10) : 978 -985 . DOI: 10.3877/cma.j.issn.1672-6448.2024.10.008
Objective
To comprehensively evaluate electrical-mechanical remodeling in left bundle branch block-induced cardiomyopathy (LBBB-CM) and deeply investigate its impact on cardiac function using electrocardiographic parameters and left ventricular myocardial work parameters.
Methods
In 14 Beagle dogs,LBBB was induced by radiofrequency ablation under anesthesia. Electrocardiograms and echocardiograms were collected and analyzed before and 12 months after model creation. Seven LBBB dogs and seven healthy adult dogs were randomly selected for cardiac dissection and pathological analysis, and Masson staining was used to analyze the endocardial collagen content. According to their left ventricular injection fraction (LVEF) of LBBB dogs at 12 months after model creation, the experimental dogs were divided into an LVEF-preserved group (LVEF≥50%)and an LVEF-decreased group (LVEF<50%) to investigate the difference in electrical-mechanical remodeling between the two groups as well as the correlations between electrocardiographic parameters, myocardial work parameters, and cardiac function parameters.
Results
Compared with the baseline values, the left ventricular end-diastolic and end-systolic volumes of the experimental dogs significantly increased (P<0.01 for all), while the left ventricular ejection fraction (LVEF) significantly decreased [baseline (62.05±3.26)% vs 12 months after model creation (49.72±5.93)%, P<0.001] at 12 months. The left ventricular global longitudinal strain (GLS)and global myocardial work efficiency (GWE) significantly decreased (P<0.05), and the global constructive work (GCW) and global wasted work (GWW) significantly increased (P<0.001) in LBBB dogs at 12 months compared with the baseline values. Quantitative analysis of endocardial collagen content revealed that the collagen volume fraction (CVF) of the endocardium in each segment of the left ventricle in LBBB dogs was significantly increased compared with that of control dogs (P<0.05). Further analysis revealed that the total QRS area in the LVEF-decreased group was significantly larger than that of the LVEF-preserved group [LVEF-preserved group (665.02±147.44) mV·ms vs LVEF-decreased group (979.05±331.17) mV·ms, P<0.05]. Compared with the LVEF-preserved group, the left ventricular end-systolic volume (LVESV) significantly increased(P<0.05), while the segmental myocardial work index (SMW) of the anteroseptal and ventricular septum and the segmental myocardial work efficiency (SWE) of the ventricular septum significantly decreased in the LVEF-decreased group [SMW-anteroseptal: LVEF-preserved group (1363.22±495.37) mmHg% vs LVEF-decreased group (557.20±572.07) mmHg%, P=0.02; SMW-septal: LVEF-preserved group (920.78±473.25) mmHg% vs LVEF-decreased group (334.60±324.47) mmHg%, P=0.03; SWE-septal, LVEF-preserved group (83.11±10.33)%vs LVEF-decreased group (61.20±22.68)%, P=0.03]. Significant differences were observed in the segmental wasted work (SWW) of the ventricular septum between the two groups (LVEF-preserved group (325.22±200.96)mmHg% vs LVEF-decreased group (763.60±411.08) mmHg%, P=0.02). Correlation analysis indicated that the total QRS area was negatively correlated with LVEF (r=-0.67, P<0.01). For the segmental myocardial work parameters of septum in the middle segment, SWW was strongly negatively correlated with LVEF (r=-0.78,P<0.01), while SWE was moderately positively correlated with LVEF (r=0.64, P=0.01).
Conclusion
LBBB is not a benign arrhythmia, leading to the occurrence and development of cardiomyopathy. The electrical-mechanical remodeling of the heart induced by LBBB is related to the cardiac dysfunction, accompanied by severe endocardial fibrosis. Septal injury may trigger cardiac dysfunction in LBBB.
表1 LBBB犬造模前后QRS波参数比较( |
心电参数 | 造模前基线 | 造模后即刻 | 造模后12个月 |
---|---|---|---|
QRS时限(ms) | 80.83±8.21 | 125.33±7.44* | 124.93±6.76* |
QRS波总面积(mV·ms) | - | - | 777.17±241.18 |
表2 LBBB犬基础状态及造模后12个月左心室心肌结构及功能参数比较( |
超声参数 | 基础状态 | LBBB造模后12个月 | t值 | P值 |
---|---|---|---|---|
LVEDV(ml) | 19.79±5.32 | 25.71±7.94 | 3.71 | 0.003 |
LVESV(ml) | 7.50±2.10 | 13.14±4.93 | 5.05 | <0.001 |
LVEF(%) | 62.05±3.26 | 49.72±5.93 | 7.20 | <0.001 |
GLS(%) | 16.44±3.91 | 12.81±3.77 | 2.22 | 0.045 |
GMW(mmHg%) | 865.36±252.61 | 978.00±257.05 | 1.13 | 0.278 |
GWE(%) | 87.43±4.24 | 80.71±3.63 | 3.88 | 0.002 |
GCW(mmHg%) | 1311.14±298.11 | 1928.71±245.45 | 5.58 | <0.001 |
GWW(mmHg%) | 150.07±85.00 | 429.43±101.69 | 6.81 | <0.001 |
表3 正常对照犬与LBBB犬左心室各壁中间段及心尖部胶原体积分数比较(%, |
组别 | 数量(只) | 室间隔 | 前壁 | 侧壁 | 后壁 | 心尖部 |
---|---|---|---|---|---|---|
正常对照犬 | 7 | 7.69±3.81 | 19.85±9.14 | 8.90±2.36 | 13.06±6.67 | 8.35±1.44 |
LBBB犬 | 7 | 46.27±13.89 | 40.88±12.82 | 33.13±18.56 | 49.76±12.43 | 54.13±15.60 |
t值 | 7.08 | 3.06 | 3.17 | 3.85 | 7.12 | |
P值 | <0.001 | 0.01 | 0.01 | 0.01 | <0.001 |
表4 不同LBBB组心电参数比较( |
LBBB组别 | 数量(只) | QRS波时限(ms) | QRS波总面积(mV·ms) |
---|---|---|---|
LVEF保留组 | 9 | 126.33±7.25 | 665.02±147.44 |
LVEF下降组 | 5 | 122.40±39.42 | 979.05±331.17 |
t值 | 1.05 | 2.94 | |
P值 | 0.32 | 0.01 |
表5 不同LBBB组常规超声参数比较(ml, |
LBBB组别 | 数量(只) | LVEDV | LVESV |
---|---|---|---|
LVEF保留组 | 9 | 23.44±7.73 | 11.00±4.03 |
LVEF下降组 | 5 | 29.80±9.03 | 17.00±5.50 |
t值 | 1.50 | 2.64 | |
P值 | 0.16 | 0.02 |
表6 不同LBBB组心肌应变及做功参数比较( |
LBBB组别 | 数量(只) | 左心室纵向应变值(%) | ||||||
---|---|---|---|---|---|---|---|---|
整体参数 | 前壁 | 前间隔 | 室间隔 | 后壁 | 下壁 | 侧壁 | ||
LVEF保留组 | 9 | -13.39±3.55 | -15.70±6.22 | -16.09±6.40 | -14.95±7.99 | -13.74±7.50 | -14.32±4.10 | -12.20±4.20 |
LVEF下降组 | 5 | -11.76±4.96 | -11.58±11.88 | -12.90±5.04 | -8.46±5.53 | -11.73±7.19 | -7.19±5.98 | -15.12±6.55 |
t值 | 0.76 | 0.86 | 0.95 | 0.14 | 0.49 | 2.66 | 1.03 | |
P值 | 0.46 | 0.40 | 0.36 | 1.60 | 0.64 | 0.02 | 0.33 | |
LBBB组别 | 数量(只) | 心肌做功指数(mmHg%) | ||||||
整体参数 | 前壁 | 前间隔 | 室间隔 | 后壁 | 下壁 | 侧壁 | ||
LVEF保留组 | 9 | 1023.56±299.26 | 1353.44±558.03 | 1363.22±495.37 | 920.78±473.25 | 959.89±572.20 | 1105.78±645.04 | 969.00±361.42 |
LVEF下降组 | 5 | 896.00±324.07 | 1327.20±492.27 | 557.20±572.07 | 334.60±324.47 | 969.00±549.59 | 998.40±196.20 | 1102.20±824.83 |
t值 | 0.88 | 0.09 | 2.77 | 2.45 | 0.03 | 0.36 | 0.43 | |
P值 | 0.40 | 0.93 | 0.02 | 0.03 | 0.98 | 0.73 | 0.68 | |
LBBB组别 | 数量(只) | 做功效率(%) | ||||||
整体参数 | 前壁 | 前间隔 | 室间隔 | 后壁 | 下壁 | 侧壁 | ||
LVEF保留组 | 9 | 81.33±3.00 | 87.78±13.73 | 83.44±8.88 | 83.11±10.33 | 89.11±8.30 | 87.22±10.60 | 79.11±7.37 |
LVEF下降组 | 5 | 79.60±26.32 | 85.60±11.52 | 79.60±10.74 | 61.20±22.68 | 85.00±12.08 | 82.60±10.16 | 87.80±7.46 |
t值 | 0.85 | 0.30 | 0.72 | 2.52 | 0.76 | 0.79 | 2.10 | |
P值 | 0.41 | 0.77 | 0.48 | 0.03 | 0.46 | 0.44 | 0.06 | |
LBBB组别 | 数量(只) | 有用功(mmHg%) | ||||||
整体参数 | 前壁 | 前间隔 | 室间隔 | 后壁 | 下壁 | 侧壁 | ||
LVEF保留组 | 9 | 1953.11±281.42 | 2160.11±828.57 | 2639.00±719.94 | 1912.00±817.10 | 1629.33±555.57 | 1845.67±592.36 | 1555.89±614.46 |
LVEF下降组 | 5 | 1884.80±576.55 | 2132.00±567.16 | 2013.00±854.24 | 1282.00±530.80 | 1755.80±682.66 | 1764.00±303.67 | 1554.80±737.42 |
t值 | 0.48 | 0.07 | 1.46 | 1.54 | 0.38 | 0.28 | 0.00 | |
P值 | 0.64 | 0.94 | 0.17 | 0.15 | 0.71 | 0.78 | 1.00 | |
LBBB组别 | 数量(只) | 无用功(mmHg%) | ||||||
整体参数 | 前壁 | 前间隔 | 室间隔 | 后壁 | 下壁 | 侧壁 | ||
LVEF保留组 | 9 | 414.56±95.96 | 233.89±216.46 | 469.00±233.82 | 325.22±200.96 | 176.11±115.17 | 238.33±185.42 | 362.78±92.09 |
LVEF下降组 | 5 | 456.20±145.04 | 308.00±225.90 | 553.00±449.38 | 763.60±411.08 | 281.00±236.03 | 354.20±195.21 | 160.40±70.60 |
t值 | 0.72 | 0.60 | 0.47 | 2.72 | 1.14 | 1.10 | 4.24 | |
P值 | 0.49 | 0.56 | 0.65 | 0.02 | 0.28 | 0.29 | 0.001 |
1 |
Blanc JJ, Fatemi M, Bertault V, et al. Evaluation of left bundle branch block as a reversible cause of non-ischaemic dilated cardiomyopathy with severe heart failure. A new concept of left ventricular dyssynchronyinduced cardiomyopathy[J]. Europace, 2005, 7(6): 604-610.
|
2 |
Francia P, Balla C, Paneni F, et al. Left bundle-branch block--pathophysiology, prognosis, and clinical management[J]. Clin Cardiol,2007, 30(3): 110-115.
|
3 |
Sze E, Samad Z, Dunning A, et al. Impaired recovery of left ventricular function in patients with cardiomyopathy and left bundle branch block[J]. J Am Coll Cardiol, 2018, 71(3): 306-317.
|
4 |
Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. J Am Coll Cardiol,2022, 79(17): e263-e421.
|
5 |
Wang NC, Singh M, Adelstein EC, et al. New-onset left bundle branch block-associated idiopathic nonischemic cardiomyopathy and left ventricular ejection fraction response to guideline-directed therapies:the NEOLITH study[J]. Heart Rhythm, 2016, 13(4): 933-942.
|
6 |
葛贝贝, 许迪, 缪长青, 等. 左束支传导阻滞对左心室功能及运动模式的影响[J]. 中华超声影像学杂志, 2020, 29(9): 799-806.
|
7 |
Okin PM, Roman MJ, Devereux RB, et al. Time-voltage QRS area of the 12-lead electrocardiogram: detection of left ventricular hypertrophy[J]. Hypertension, 1998, 31(4): 937-942.
|
8 |
Aleksova A, Carriere C, Zecchin M, et al. New-onset left bundle branch block independently predicts long-term mortality in patients with idiopathic dilated cardiomyopathy: data from the Trieste Heart Muscle Disease Registry[J]. Europace, 2014, 16(10): 1450-1459.
|
9 |
Barake W, Witt CM, Vaidya VR, et al. Incidence and natural history of left bundle branch block induced cardiomyopathy[J]. Circ Arrhythm Electrophysiol, 2019, 12(9): e007393.
|
10 |
Vaillant C, Martins RP, Donal E, et al. Resolution of left bundle branch block-induced cardiomyopathy by cardiac resynchronization therapy[J]. J Am Coll Cardiol, 2013, 61(10): 1089-1095.
|
11 |
Tan NY, Witt CM, Oh JK, et al. Left bundle branch block: current and future perspectives[J]. Circ Arrhythm Electrophysiol, 2020, 13(4):e008239.
|
12 |
Morita N, Mandel WJ, Kobayashi Y, et al. Cardiac fibrosis as a determinant of ventricular tachyarrhythmias[J]. J Arrhythm, 2014,30(6): 389-394.
|
13 |
Disertori M, Rigoni M, Pace N, et al. Myocardial fibrosis assessment by LGE is a powerful predictor of ventricular tachyarrhythmias in ischemic and nonischemic LV dysfunction: a meta-analysis[J]. JACC Cardiovasc Imaging, 2016, 9(9): 1046-1055.
|
14 |
Massoullie G, Sapin V, Ploux S, et al. Low fibrosis biomarker levels predict cardiac resynchronization therapy response[J]. Sci Rep, 2019,9(1): 6103.
|
15 |
Wang X, Ge B, Miao C, et al. Beyond conduction impairment:Unveiling the profound myocardial injury in left bundle branch block[J]. Heart Rhythm, 2024.
|
16 |
Garcia-Escobar A, Vera-Vera S, Jurado-Roman A, et al. Subtle QRS changes are associated with reduced ejection fraction, diastolic dysfunction, and heart failure development and therapy responsiveness:Applications for artificial intelligence to ECG[J]. Ann Noninvasive Electrocardiol, 2022, 27(6): e12998.
|
17 |
Zhou Z, Ma F, Zhu J, et al. Potential underestimation of left ventricular mechanical dyssynchrony in dyssynchrony and outcomes assessment[J]. J Multidiscip Healthc, 2024, 17: 1721-1729.
|
18 |
Calle S, Kamoen V, De Buyzere M, et al. A strain-based staging classification of left bundle branch block-induced cardiac remodeling[J].JACC Cardiovasc Imaging, 2021, 14(9): 1691-1702.
|
19 |
Andersen DC, Kragholm K, Petersen LT, et al. Association between vectorcardiographic QRS area and incident heart failure diagnosis and mortality among patients with left bundle branch block: a registerbased cohort study[J]. J Electrocardiol, 2021, 69: 30-35.
|
20 |
孙佳英, 黄云洲, 任书堂, 等. 无创心肌做功对左束支传导阻滞患者左心室整体及节段心肌收缩功能的评价[J/OL]. 中华医学超声杂志(电子版), 2023, 20(8): 836-843.
|
21 |
Sletten OJ, Aalen JM, Izci H, et al. Lateral wall dysfunction signals onset of progressive heart failure in left bundle branch block[J]. JACC:Cardiovascular Imaging, 2021, 14(11): 2059-2069.
|
22 |
Mafi Rad M, Wijntjens GWM, Engels EB, et al. Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy[J]. Heart Rhythm, 2016, 13(1): 217-225.
|
/
〈 |
|
〉 |