2025 , Vol. 22 >Issue 04: 305 - 310
DOI: https://doi.org/10.3877/cma.j.issn.1672-6448.2025.04.005
基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断
Copy editor: 汪荣
网络出版日期: 2025-06-09
基金资助
国家重点研发计划(2022YFF0606301)深圳市科技计划项目(JCYJ20220530155208018,JCYJ20210324130812035,JCYJ20220530142002005)广东省医院协会超声医学科研专项基金(2023CSM005)河源市社会发展科技计划项目(230527161608760)
版权
Intelligent quality assessment and diagnosis of fetal omphalocele using YOLO V8 in ultrasound imaging
Online published: 2025-06-09
Copyright
目的
针对胎儿脐膨出产前超声诊断中异常特征识别经验依赖性强的问题,开发智能辅助质控与诊断模型,以提升基层医师筛查效能。
方法
回顾性收集深圳市妇幼保健院2016 年1 月至2024 年12 月进行产前超声检查的孕妇资料,纳入脐膨出胎儿324 例1620 张图像及正常胎儿1000例2555 张图像。经超声专家标注后,基于病例水平将数据按照7:2:1 的比例划分为训练集、验证集和测试集,基于YOLO V8 构建双任务模型:脐带腹壁插入口横切面质量评估(标准/非标准);腹壁异常结构检测(腹壁缺损、突出包块)。以精确率、召回率及平均精度评估模型检测目标结构的效能;以准确率及加权Kappa 系数分析模型切面分类与真实类别的符合率和一致性。
结果
模型对关键结构检测的平均精度达0.932,其中对腹壁轮廓(0.987)、脐带插入口(0.977)及突出包块(0.938)的检测精度表现优异,腹壁缺损检测精度稍逊(0.826)。模型对标准切面、非标准切面及脐膨出的分类准确率分别为96.8%(151/156)、100%(55/55)和96.1%(148/154),与真实类别的一致性强(加权Kappa= 0.955,P<0.001)。
结论
基于YOLO V8 的人工智能模型实现了脐膨出超声诊断的标准化质控与异常特征识别的协同优化,尤其适用于辅助基层医师的产前超声快速筛查。
陈茵 , 谭莹 , 谭渤瀚 , 何冠南 , 王磊 , 温昕 , 朱巧珍 , 梁博诚 , 李胜利 . 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J]. 中华医学超声杂志(电子版), 2025 , 22(04) : 305 -310 . DOI: 10.3877/cma.j.issn.1672-6448.2025.04.005
Objective
To address the issue of strong reliance on experience in identifying abnormal features during prenatal ultrasound diagnosis of fetal omphalocele, an intelligent auxiliary quality control and diagnosis model was developed to enhance the screening efficiency of primary physicians.
Methods
The data of pregnant women who underwent prenatal ultrasound examinations at Shenzhen Maternal and Child Health Hospital from January 2016 to December 2024 were retrospectively collected.A total of 324 cases of fetal omphalocele (1620 images) and 1000 cases of normal fetuses (2555 images)were included.After being labeled by ultrasound experts, the data were divided into training set, validation set, and test set at a ratio of 7:2:1 based on the case level.A dual-task model based on YOLO V8 was constructed: assessment of the quality of the cross-sectional images of the umbilical cord abdominal wall insertion (standard/non-standard) and detection of abnormal abdominal wall structures (abdominal wall defect, protruding mass).The efficacy of the model in detecting target structures was evaluated by precision,recall rate, and average accuracy.The consistency and agreement between the model's section classification and the true category were analyzed by accuracy and weighted Kappa coefficient.
Results
The average accuracy of the model for detecting key structures reached 0.932.The detection of abdominal wall contour(0.987), umbilical cord insertion (0.977), and protruding mass (0.938) was excellent, while the detection accuracy of abdominal wall defect was slightly inferior (0.826).The classification accuracy of the model for standard sections, non-standard sections, and omphalocele was 96.8% (151/156), 100% (55/55), and 96.1%(148/154), respectively, and was highly consistent with the true category (weighted Kappa = 0.955, P<0.001).
Conclusion
The artificial intelligence model based on YOLO V8 can achieve standardized quality control and abnormal feature identification in prenatal ultrasound diagnosis of omphalocele, and is particularly suitable for assisting primary physicians in rapid prenatal ultrasound screening.
表1 基于YOLO V8 的模型在测试集中对脐带腹壁插入口横切面超声图像不同结构及总体的检测效能 |
检测结构 | 检测出对应结构的图像数量(张) | 精确率 | 召回率 | 平均精度 |
---|---|---|---|---|
腹壁轮廓 | 364 | 0.966 | 0.962 | 0.987 |
脐带插入口 | 155 | 0.945 | 0.961 | 0.977 |
突出包块 | 153 | 0.891 | 0.889 | 0.938 |
腹壁缺损处 | 153 | 0.829 | 0.760 | 0.826 |
总体 | 365 | 0.908 | 0.893 | 0.932 |
表2 基于YOLO V8 的模型在测试集中对脐带腹壁插入口横切面超声图像的分类与真实类别的比较(张) |
模型分类 | 真实类别 | 合计 | ||
---|---|---|---|---|
标准切面 | 非标准切面 | 脐膨出 | ||
标准切面 | 151 | 0 | 2 | 153 |
非标准切面 | 2 | 55 | 4 | 61 |
脐膨出 | 3 | 0 | 148 | 151 |
合计 | 156 | 55 | 154 | 365 |
1 |
李胜利, 罗国阳.胎儿畸形产前超声诊断学[M].2 版.2017: 科学出版社.
|
2 |
Stoll C, Alembik Y, Roth MP.Cooccurring non-omphalocele and nongastroschisis anomalies among cases with congenital omphalocele and gastroschisis[J].Am J Med Genet A, 2021, 185(7): 1954-1971.
|
3 |
Liang YL, Kang L, Tsai PY, et al.Prenatal diagnosis of fetal omphalocele by ultrasound:A comparison of two centuries[J].Taiwan J Obstet Gynecol, 2013, 52(2): 258-263.
|
4 |
Salomon LJ, Alfirevic Z, Berghella V, et al.ISUOG Practice Guidelines(updated):performance of the routine mid-trimester fetal ultrasound scan[J].Ultrasound Obstet Gynecol, 2022, 59(6): 840-856.
|
5 |
Salomon LJ, Alfirevic Z, Berghella V, et al.Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan[J].Ultrasound Obstet Gynecol, 2011, 37(1): 116-126.
|
6 |
沈丽君, 陆佳佳, 钱燕芳, 等.对基层医院进行产科超声标准化切面扫查培训的效果[J].医药前沿, 2024, 14(33): 67-69,73.
|
7 |
广东省预防医学会出生缺陷预防与控制专业委员会, 中华医学会儿科分会心血管病学组胎儿心脏病协作组.胎儿超声心动图检查技术规范(2021 版)[J].岭南心血管病杂志, 2022, 28(3): 282-286.
|
8 |
Arnaout R, Curran L, Zhao Y, et al.An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease[J].Nat Med, 2021, 27(5): 882-891.
|
9 |
Lin M, Zhou Q, Lei T, et al.Deep learning system improved detection efficacy of fetal intracranial malformations in a randomized controlled trial[J].NPJ Digit Med, 2023, 6(1): 191.
|
10 |
Xie HN, Wang N, He M, et al.Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal[J].Ultrasound Obstet Gynecol, 2020, 56(4): 579-587.
|
11 |
熊奕, 王慧芳, 林琪, 等.规范超声筛查胎儿脐膨出的价值[J].中国超声医学杂志, 2006, 22(3): 224-225.
|
12 |
张涛, 赵胜, 杨小红, 等.早孕期胎儿腹壁缺损的超声诊断[J/OL].中华医学超声杂志(电子版), 2023, 20(11): 1139-1144.
|
13 |
郭文佳, 罗丹丹, 徐荟, 等.新型智能产前超声技术SFA 自动识别与获取胎儿标准切面[J].中国医学影像技术, 2023, 39(1): 65-69.
|
14 |
谭莹, 文华轩, 彭桂艳, 等.产科超声图像智能质量控制系统的效能[J].中国医学影像技术, 2022, 38(9): 1361-1366.
|
/
〈 |
|
〉 |