2025 , Vol. 22 >Issue 03: 247 - 252
DOI: https://doi.org/10.3877/cma.j.issn.1672-6448.2025.03.009
二维剪切波弹性成像技术在评估儿童脾大中的临床应用
Copy editor: 吴春凤
收稿日期: 2024-12-31
网络出版日期: 2025-06-10
基金资助
湖北省科技计划重点研发项目(2023BCB007)武汉市教育局市属高校教研课题(2021006)
版权
Clinical application of two-dimensional shear wave elastography in evaluation of splenomegaly in children
Received date: 2024-12-31
Online published: 2025-06-10
Copyright
目的
应用超声二维剪切波弹性成像技术(2D-SWE)测量不同病因脾大患儿的脾硬度(以杨氏模量值体现),探讨其差异及2D-SWE对儿童脾大的临床应用价值。
方法
收集2022年1月至2024年5月武汉儿童医院门诊或住院符合脾大诊断标准的患儿93例(病例组)和45例正常儿童(正常组)。病例组根据病因分为感染性疾病组(IDG)23例、血液系统疾病组(BDG)19例、门静脉系统疾病组(PVDG)51例,根据超声诊断是否合并肝硬化分为合并肝硬化组32例和不合并肝硬化组61例。所有受检者脾均行常规超声和2D-SWE检查。测量常规二维超声参数(长径、厚度)和脾中部实质杨氏模量值。正常组与病例组之间脾弹性值差异采用独立样本t检验;合并肝硬化与不合并肝硬化组脾弹性值之间采用点二列相关分析;病例组不同病因之间脾弹性值的关系采用Kruskal-Wallis检验;绘制受试者操作特征(ROC)曲线,计算曲线下面积(AUC),通过约登指数确定不同病因分组最佳截断值,分析其敏感度和特异度;病例组脾大小与脾硬度间的相关性采用Spearman相关性分析。
结果
病例组脾长径、厚度及杨氏模量值高于正常组[(11.24±2.76)cm vs (8.08±1.43)cm;(2.94±0.83)cm vs (2.18±0.39)cm;(24.75±8.23)kPa vs (16.11±2.66)kPa],差异具有统计学意义(t=7.197、5.809、6.863,P均<0.001)。合并肝硬化组脾杨氏模量值高于不合并肝硬化组[(30.72±5.82)kPa vs (21.62±7.57)kPa],2组之间存在正相关关系(r=0.529,P<0.001)。不同病因亚组脾杨氏模量值为PVDG>BDG>IDG[(28.86±5.75)kPa vs (23.90±10.13)kPa vs(16.34±3.18)kPa,H=46.353,P<0.001]。ROC曲线分析显示IDG与BDG的最佳截断值为20.46 kPa(敏感度为63.16%,特异度为91.30%),BDG与PVDG的最佳截断值为23.80 kPa(敏感度为80.39%,特异度为73.68%)。
结论
2D-SWE可用于脾大患儿的脾硬度评估,脾大患儿脾硬度增高,合并肝硬化者尤著。不同病因所致脾大的脾硬度为PVDG>BDG>IDG。2D-SWE对于儿童脾大的病因诊断及脾大合并肝硬化患儿的病情评估和长期随访有潜在的临床应用价值。
谭娇艳 , 袁莉 , 景珅 , 郭吴丹 , 吴文菁 . 二维剪切波弹性成像技术在评估儿童脾大中的临床应用[J]. 中华医学超声杂志(电子版), 2025 , 22(03) : 247 -252 . DOI: 10.3877/cma.j.issn.1672-6448.2025.03.009
Objective
To measure spleen stiffness using two-dimensional shear wave elastography(2D-SWE) in children with splenomegaly of varying etiologies by Young’s modulus values and explore its differences and clinical application value.
Methods
A total of 93 children meeting the diagnostic criteria for splenomegaly (case group) and 45 healthy children (control group) were enrolled from outpatient or inpatient departments of Wuhan Children’s Hospital between January 2022 and May 2024. The case group was further divided into subgroups: infectious disease group (IDG, n=23), hematological disease group (BDG,n=19), and portal venous system disease group (PVDG, n=51). Based on ultrasound-diagnosed cirrhosis, they were classified into a cirrhosis subgroup (n=32) or non-cirrhosis subgroup (n=61). All participants underwent conventional ultrasound and 2D-SWE examinations. Conventional 2D ultrasound parameters (spleen length and thickness) and Young’s modulus values of the splenic parenchyma were measured. Independent samples t-test was used to compare elasticity between the control and case groups. Point-biserial correlation analysis was applied for elasticity between the cirrhosis and non-cirrhosis subgroups. The Kruskal-Wallis test was used to assess elasticity differences among etiological subgroups. Receiver operating characteristic (ROC)curves were plotted for different etiological subgroups to determine the optimal cutoff values (via Youden index), area under the curve (AUC), sensitivity, and specificity. Spearman correlation was used to analyze the relationship between spleen size and stiffness in the case group.
Results
Spleen length, thickness, and Young’s modulus values were higher in the case group than in controls [(11.24±2.76)cm vs (8.08±1.43)cm, (2.94±0.83)cm vs (2.18±0.39)cm, and (24.75±8.23) kPa vs (16.11±2.66) kPa, t=7.197, 5.809, and 6.863, respectively; all P<0.001]. The cirrhosis subgroup had higher Young’s modulus values than the non-cirrhosis subgroup [(30.72±5.82) kPa vs (21.62±7.57) kPa; r=0.529, P<0.001]. Among etiological subgroups, Young’s modulus value was higher in the PVDG, followed by the BDG and IDG [(28.86±5.75)kPa, (23.90±10.13) kPa, and (16.34±3.18) kPa, respectively, H=46.353, P<0.001]. ROC analysis showed optimal cutoff values of 20.46 kPa (sensitivity 63.16%, specificity 91.30%) for distinguishing IDG from BDG and 23.80 kPa (sensitivity 80.39%, specificity 73.68%) for BDG vs PVDG.
Conclusion
2D-SWE is feasible for assessing spleen stiffness in children with splenomegaly, with significantly higher stiffness observed in cirrhotic patients. Stiffness varies by etiology (PVDG > BDG > IDG). 2D-SWE has potential clinical value in the etiological diagnosis of splenomegaly in children, as well as in the disease assessment and long-term follow-up of pediatric patients with splenomegaly complicated by liver cirrhosis.
表1 脾大患儿与正常儿童一般临床资料和脾弹性值比较 |
项目 | 病例组(n=93 例) | 正常组(n=45 例) | 统计值 | P值 |
---|---|---|---|---|
性别[ 例(%)] | χ 2=0.276 | 0.599 | ||
女性 | 39(28.26) | 21(15.22) | ||
男性 | 54(39.13) | 24(17.39) | ||
年龄(月, ± s ) | 70.37±39.17 | 94.51±44.49 | t=3.246 | 0.001 |
体质量指数(kg/m2, ± s ) | 16.36±3.40 | 16.68±3.61 | t=-0.505 | 0.614 |
脾长径(cm, ± s ) | 11.24±2.76 | 8.08±1.43 | t=7.197 | < 0.001 |
脾厚度(cm, ± s ) | 2.94±0.83 | 2.18±0.39 | t=5.809 | < 0.001 |
脾弹性值(kPa, ± s ) | 24.75±8.23 | 16.11±2.66 | t=6.863 | < 0.001 |
表2 脾大患儿不同病因亚组间一般临床资料和脾弹性值比较 |
项目 | IDG(n=23) | BDG(n=19) | PVDG(n=51) | 统计值 | P值 |
---|---|---|---|---|---|
性别[ 例(%)] | χ 2=1.799 | 0.407 | |||
女性 | 7(7.53) | 8(8.60) | 24(25.81) | ||
男性 | 16(17.20) | 11(11.83) | 27(29.03) | ||
年龄(月, ± s ) | 79.48±39.33 | 58.68±30.55 | 70.61±41.42 | H=3.024 | 0.220 |
体质量指数(kg/m2, ± s ) | 15.62±2.37 | 15.43±1.86 | 17.04±4.05 | H=3.177 | 0.204 |
脾长径(cm, ± s ) | 10.89±2.60 | 11.15±2.76 | 11.43±2.87 | H=0.318 | 0.853 |
脾厚度(cm, ± s ) | 2.87±0.70 | 2.98±0.87 | 2.95±0.88 | H=0.132 | 0.936 |
脾弹性值(kPa, ± s ) | 16.34±3.18 | 23.90±10.13a | 28.86±5.75ab | H=46.353 | <0.001 |
注:PVDG为门静脉系统病病组;a与感染性疾病组(IDG)比较,差异具有统计学意义(H=24.592、45.663,P=0.010、<0.001),b与血液系统疾病组(BDG)比较,差异具有统计学意义(H=21.072,P=0.011) |
表3 不同病因分组脾大患儿脾弹性值的诊断效能分析 |
病因分组 | 截断值(kPa) | 敏感度(%) | 特异度(%) | AUC(95% 置信区间) | 约登指数 | P值 |
---|---|---|---|---|---|---|
IDG 与BDG | 20.46 | 63.16 | 91.30 | 0.796(0.644~0.905) | 0.545 | < 0.001 |
IDG 与PVDG | 20.46 | 94.12 | 91.30 | 0.979(0.915~0.998) | 0.854 | < 0.001 |
BDG 与PVDG | 23.80 | 80.39 | 73.68 | 0.741(0.622~0.838) | 0.541 | 0.003 |
注:IDG为感染性疾病组,BDG为血液系统疾病组,PVDG为门静脉系统疾病组,AUC为曲线下面积 |
1 |
Batur A, Alagoz S, Durmaz F, et al. Measurement of spleen stiffness by shear-wave elastography for prediction of splenomegaly etiology [J].Ultrasound Q, 2019, 35(2): 153-156.
|
2 |
Mckenzie CV, Colonne CK, Yeo JH, et al. Splenomegaly:pathophysiological bases and therapeutic options [J]. Int J Biochem Cell Biol, 2018, 94: 40-43.
|
3 |
Curovic Rotbain E, Lund Hansen D, Schaffalitzky De Muckadell O, et al. Splenomegaly - diagnostic validity, work-up, and underlying causes[J]. PLoS One, 2017, 12(11): e186674.
|
4 |
Bamber J, Cosgrove D, Dietrich CF, et al. Efsumb guidelines and recommendations on the clinical use of ultrasound elastography. Part 1:basic principles and technology [J]. Ultraschall Med, 2013, 34(2): 169-184.
|
5 |
Shiina T, Nightingale KR, Palmeri ML, et al. Wfumb guidelines and recommendations for clinical use of ultrasound elastography: part 1: basic principles and terminology [J]. Ultrasound Med Biol, 2015,41(5): 1126-1147.
|
6 |
Ferraioli G, Filice C, Castera L, et al. Wfumb guidelines and recommendations for clinical use of ultrasound elastography: part 3:liver [J]. Ultrasound Med Biol, 2015, 41(5): 1161-1179.
|
7 |
Barr RG, Nakashima K, Amy D, et al. Wfumb guidelines and recommendations for clinical use of ultrasound elastography: part 2:breast [J]. Ultrasound Med Biol, 2015, 41(5): 1148-1160.
|
8 |
Cosgrove D, Barr R, Bojunga J, et al. Wfumb guidelines and recommendations on the clinical use of ultrasound elastography: part 4.Thyroid [J]. Ultrasound Med Biol, 2017, 43(1): 4-26.
|
9 |
Močnik M, Marčun Varda N. Ultrasound elastography in children [J].Children (Basel), 2023, 10(8): 1296.
|
10 |
Galina P, Alexopoulou E, Mentessidou A, et al. Diagnostic accuracy of two-dimensional shear wave elastography in detecting hepatic fibrosis in children with autoimmune hepatitis, biliary atresia and other chronic liver diseases [J]. Pediatr Radiol, 2021, 51(8): 1358-1368.
|
11 |
Alhashmi GH, Gupta A, Trout AT, et al. Two-dimensional ultrasound shear wave elastography for identifying and staging liver fibrosis in pediatric patients with known or suspected liver disease: a clinical effectiveness study [J]. Pediatr Radiol, 2020, 50(9): 1255-1262.
|
12 |
王天有, 申昆玲, 沈颖. 诸福棠实用儿科学 [M]. 9版. 北京: 人民卫生出版社, 2022: 2049-2050.
|
13 |
中华医学会消化病学分会. 中国肝硬化临床诊治共识意见 [J]. 中华消化杂志, 2023, 43(4): 227-247.
|
14 |
Furuichi Y, Moriyasu F, Taira J, et al. Noninvasive diagnostic method for idiopathic portal hypertension based on measurements of liver and spleen stiffness by arfi elastography [J]. J Gastroenterol, 2013, 48(9):1061-1068.
|
15 |
Albayrak E, Server S. The relationship of spleen stiffness value measured by shear wave elastography with age, gender, and spleen size in healthy volunteers [J]. J Med Ultrason (2001), 2019, 46(2):195-199.
|
16 |
Yalcin K, Demir BC. Spleen stiffness measurement by shear wave elastography using acoustic radiation force impulse in predicting the etiology of splenomegaly [J]. Abdom Radiol (NY), 2021, 46(2): 609-615.
|
17 |
Pawluś A, Inglot MS, Szymanska K, et al. Shear wave elastography of the spleen: evaluation of spleen stiffness in healthy volunteers [J].Abdom Radiol (NY), 2016, 41(11): 2169-2174.
|
18 |
Leung VY, Shen J, Wong VW, et al. Quantitative elastography of liver fibrosis and spleen stiffness in chronic hepatitis B carriers: comparison of shear-wave elastography and transient elastography with liver biopsy correlation [J]. Radiology, 2013, 269(3): 910-918.
|
19 |
Stefanescu H, Grigorescu M, Lupsor M, et al. Spleen stiffness measurement using fibroscan for the noninvasive assessment of esophageal varices in liver cirrhosis patients [J]. J Gastroenterol Hepatol, 2011, 26(1): 164-170.
|
20 |
Ye XP, Ran HT, Cheng J, et al. Liver and spleen stiffness measured by acoustic radiation force impulse elastography for noninvasive assessment of liver fibrosis and esophageal varices in patients with chronic hepatitis B [J]. J Ultrasound Med, 2012, 31(8): 1245-1253.
|
21 |
Giunta M, Conte D, Fraquelli M. Role of spleen elastography in patients with chronic liver diseases [J]. World J Gastroenterol, 2016,22(35): 7857-7867.
|
22 |
Pawlus A, Inglot M, Chabowski M, et al. Shear wave elastography(swe) of the spleen in patients with hepatitis B and C but without significant liver fibrosis [J]. Br J Radiol, 2016, 89(1066): 20160423.
|
23 |
杨凯, 何蕊玲, 马苏美, 等. 剪切波弹性成像测量脾脏硬度预测肝硬化高风险食管胃底静脉曲张 [J]. 中国医学影像学杂志, 2024,32(11): 1155-1159.
|
24 |
Chin JL, Chan G, Ryan JD, et al. Spleen stiffness can non-invasively assess resolution of portal hypertension after liver transplantation [J].Liver Int, 2015, 35(2): 518-523.
|
25 |
Ekinci O, Ozgokce M, Turko E, et al. Spleen stiffness measurement by using shear-wave elastography as a predictor of progression to secondary myelofibrosis [J]. Ultrasound Q, 2021, 37(2): 149-154.
|
26 |
Uchida H, Sakamoto S, Kobayashi M, et al. The degree of spleen stiffness measured on acoustic radiation force impulse elastography predicts the severity of portal hypertension in patients with biliary atresia after portoenterostomy [J]. J Pediatr Surg, 2015, 50(4): 559-564.
|
/
〈 |
|
〉 |