[1] |
Maron BJ, Gardin JM, Flack JM, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4 111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults[J]. Circulation, 1995, 92(4):785–789.
|
[2] |
Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF)[J]. Lancet, 1999, 253(9169):2001–2007.
|
[3] |
Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure[J]. N Engl J Med, 2001, 345(23):1667–1675.
|
[4] |
Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention[J]. Circulation, 2006, 113(14):1807–1816.
|
[5] |
Oechslin E, Jenni R. Left ventricular noncompaction revisited: a distinct phenotype with genetic heterogeneity?[J]. Eur Heart J, 2011, 32(12):1446–1456.
|
[6] |
Ding ZY. Research progress of myocardial noncompaction related genes positioning and genetic diversity[J]. Int Cardiovasc Dis J, 2012, 39:74–76.
|
[7] |
Bleyl SB, Mumford BR, Brown-Harrison MC, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals[J]. Am J Med Genet, 1997, 72(3):257–265.
|
[8] |
Baars HF, van der Smagt JJ, Doevendans PAFM. Clinical cardiogenetics[M]. Springer, 2010: 102–104.
|
[9] |
Hoedemaekers YM, Caliskan K, Majoor-Krakauer D, et al. Cardiac beta-myosin heavy chain defects in two families with noncompaction cardiomyopathy: linking noncompaction to hypertrophic, restrictive, and dilated cardiomyopathyies[J]. Eur Heart J, 2007, 28(22):2732–2737.
|
[10] |
Paterick TE, Tajik AJ. Left ventricular noncompaction: a diagnostically challenging cardiomyopathy[J]. Circ J, 2012, 76(7):1556–1562.
|
[11] |
Srivastava D, Olson EN. A genetic blueprint for cardiac development[J]. Nature, 2000, 407(6801):221–226.
|
[12] |
Klaassen S, Probst S, Oechslin E, et al. Mutations in sarcomere protein genes in left ventricular noncompaction[J]. Circulation, 2008, 117(22):2893–2901.
|
[13] |
Chen S. Research progress of myocardial fibrosis in hypertrophic cardiomyopathy[J]. Progress Cardiovasc Dis, 2012, 33(6):702–705.
|
[14] |
Song BR, Lai YQ. Research progress of hypertrophic cardiomyopathy related genetics[J]. Cardiovasc Dis J, 2011, 30(6):552–554.
|
[15] |
Lampropoulos KM, Dounis VG, Aggeli C, et al. Contrast echocardiography: contribution to diagnosis of left ventricular noncompaction cardiomyopathy[J]. Hellenic J Cardiol, 2011, 52(3):265–272.
|
[16] |
Bertini M, Ziacchi M, Biffi M, et al. Effects of cardiac resynchronisation therapy on dilated cardiomyopathy with isolated ventricular noncompaction[J]. Heart, 2011, 97(4):295–300.
|
[17] |
Lilli A, Chioccioli M, Del Meglio J, et al. Coronary microfistulae associated with non compacted myocardium: a rare cause of myocardial ischemia unraveled by a multimodality imaging approach[J]. Int J Cardiol, 2012, 159(1):e16–e17.
|
[18] |
Correia E, Santos LF, Rodrigues B, et al. Left ventricular noncompaction: diagnosis by three-dimensional echocardiography[J]. Rev Port Cardiol, 2009, 28(11):1277–1283.
|
[19] |
Aras D, Tufekcioglu O, Ergun K, et al. Clinical features of isolated ventricular noncompaction in adults long-term clinical course, echocardiographic properties, and predictors of left ventricular failure[J]. J Card Fail, 2006, 12(9):726–733.
|
[20] |
Fazio G, Corrado G, Novo G, et al. Ventricular dysfunction and number of non compacted segments in non compaction: non-independent predictors[J]. Int J Cardiol, 2010, 141(3):250–253.
|
[21] |
Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization[J]. JACC Cardiovasc Imaging, 2012, 5(3):305–316.
|
[22] |
Itatani K, Okada T, Uejima T, et al. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress[J]. Jpn J Appl Phys, 2013, 52:7–16.
|
[23] |
Hayashi T, Itatani K, Inuzuka R, et al. Dissipative energy loss within the left ventricle detected by vector flow mapping in children: normal values and effects of age and heart rate[J]. J Cardiol, 2015, pii:S0914–5087(14)00365–7.
|
[24] |
Stugaard M, Koriyama H, Katsuki K, et al. Energy loss in the left ventricle obtained by vector flow mapping as a new quantitative measure of severity ofaortic regurgitation: a combined experimental and clinical study[J]. Eur Heart J Cardiovasc Imaging, 2015, 16(7):723–730.
|