切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2015, Vol. 12 ›› Issue (12) : 966 -973. doi: 10.3877/cma.j.issn.1672-6448.2015.12.014

所属专题: 文献

基础研究

慢性间歇性低氧新西兰兔右心结构和功能的改变
许建萍1, 王健1,(), 陈武1, 刘利平1, 贾春梅1, 吴成爱1, 元丽芝1, 祁卓君1   
  1. 1. 030001 太原,山西医科大学第一医院超声科
  • 收稿日期:2015-03-03 出版日期:2015-12-01
  • 通信作者: 王健
  • 基金资助:
    山西省自然科学基金(2014011040-5); 山西省回国留学人员科研资助项目(2014-074)

Right ventricle structure and function of New Zealand rabbits with chronic intermittent hypoxia by echocardiography

Jianping Xu1, Jian Wang1,(), Wu Chen1, Liping Liu1, Chunmei Jia1, Cheng′ai Wu1, Lizhi Yuan1, Zhuojun Qi1   

  1. 1. Department of Ultrasound, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2015-03-03 Published:2015-12-01
  • Corresponding author: Jian Wang
  • About author:
    Corresponding author: Wang Jian, Email:
引用本文:

许建萍, 王健, 陈武, 刘利平, 贾春梅, 吴成爱, 元丽芝, 祁卓君. 慢性间歇性低氧新西兰兔右心结构和功能的改变[J]. 中华医学超声杂志(电子版), 2015, 12(12): 966-973.

Jianping Xu, Jian Wang, Wu Chen, Liping Liu, Chunmei Jia, Cheng′ai Wu, Lizhi Yuan, Zhuojun Qi. Right ventricle structure and function of New Zealand rabbits with chronic intermittent hypoxia by echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2015, 12(12): 966-973.

目的

建立慢性间歇性低氧(CIH)新西兰兔模型,应用超声心动图观察CIH早期(0~8周)新西兰兔右心结构、功能及血流动力学的动态变化。

方法

健康雄性新西兰兔24只置于8%~21%氧浓度的CIH舱内,每天持续6 h,6 d/周,共8周。于CIH第0、1、2、4、6、8周超声心动图观察新西兰兔右心室结构和功能,同时随机处死1只,观察右心室心肌和肺组织的病理变化。采用混合效应模型分析比较制模后0、1、2、4、6、8周右心结构及功能参数。

结果

右心结构参数与CIH 0周比较,右心室前后径、长径、基底部横径、中部横径、右心室前壁厚度、右心室流出道内径、肺动脉内径、左肺动脉内径、右肺动脉内径、右心房前后径及右心房上下径8周时增大,但差异均无统计学意义(P均>0.05)。右心室收缩功能参数:与CIH 0周相比,右心室心肌做功指数(RVMPI)于4周减小(F=3.46,P<0.05),三尖瓣环平面收缩位移(TAPSE)于4、6、8周增大(F=3.11、3.41、3.86,P均<0.05),右心室面积变化率(RVFAC)于8周增大(F=3.45,P<0.05),心率校正的等容收缩时间(ICTc)于2、4周时缩短(F=3.13、3.33,P均<0.05),8周时恢复至基础状态,肺动脉血流频谱射血时间(ET)于1、2周缩短(F=3.01、3.15,P均<0.05),加速时间(AT)于1、2、4周缩短(F=3.13、3.15、3.32,P均<0.05)。右心室舒张功能参数:与CIH 0周相比,心率(HR)于1周、2周、4周加快(F=3.06、3.12、3.30,P均<0.05),心率矫正的等容舒张时间(IRTc)于1、2、4周缩短(F=3.15、3.31、3.17,P均<0.05),三尖瓣口舒张早期峰值流速/组织多普勒右心室侧壁三尖瓣环舒张早期峰值速度(E/E′)于1、2周时减小(F=3.13、3.44,P均<0.05),三尖瓣口舒张早期峰值流速/三尖瓣口舒张晚期峰值流速(E/A)于4、6、8周时增大(F=4.01、3.82、3.37,P均<0.05),组织多普勒右心室侧壁三尖瓣环舒张早期峰值速度/组织多普勒右心室侧壁三尖瓣舒张晚期峰值速度(E′/A′)于8周时增大(F=3.81,P<0.05)。病理学检查:右心室心肌细胞CIH 4周心肌结构正常,心肌细胞细长;CIH 8周少部分出现细胞核肥大,染色加深,部分胞质疏松淡染。肺组织CIH 4周肺组织结构正常,肺泡腔无渗出;CIH 8周少部分出现炎性细胞浸润,毛细血管扩张充血,肺小动脉血管壁轻度增厚。

结论

CIH早期新西兰兔右心室功能代偿性增强,且早于结构异常;右心室舒张功能代偿早于收缩功能,IRT和ICT是右心舒张及收缩功能代偿的敏感性指标。

Objective

To observe right ventricle (RV) structure and function of New Zealand rabbits with chronic intermittent hypoxia (CIH) for short-term (0-8 weeks) by echocardiography.

Methods

Twenty-four healthy male New Zealand rabbits were set up CIH animal model for 8 weeks. RV structure′s systolic and diastolic function were measured by conventional and tissue Doppler echocardiography at 0, 1, 2, 4, 6 and 8 week and one rabbit was sacrificed randomly for RV myocytes and pulmonary tissue pathology examination. RV structure and function parameters at 0, 1, 2, 4, 6 and 8 week were analyzed by mixed effects model analysis.

Results

RV structure variables: RV, RA at 8 week increased compared with those at 0 week, but had no significant difference (P>0.05); RV systolic function variables: RVFAC at 8 week increased compared with those at 0 week (F=3.45, P<0.05), TAPSE at 4, 6, 8 week increased compared with that at 0 week (F=3.11, 3.41 and 3.86, all P<0.05), RVMPI at 4 week decreased compared with that at 0 week (F=3.46, P<0.05), recovered to baseline at 6, 8 week. Isovolumetric relaxation time (IRTc) corrected by heart rate at 1, 2, 4 week decreased compared with that at 0 week (F=3.15, 3.31 and 3.17, all P<0.05), recovered to baseline at 8 week, ET of PA at 1, 2 week decreased compared with that at 0 week (F=3.01 and 3.15, both P<0.05), recovered to baseline at 4, 6, 8 week, AT of PA at 1, 2, 4 week decreased compared with that at 0 week (F=3.13, 3.15 and 3.32, all P<0.05), recovered to baseline at 6, 8 week. RV diastolic function variables: isovolumetric contraction time (ICTc) corrected by heart rate at 2, 4 week decreased compared with that at 0 week (F=3.13 and 3.33, both P<0.05), E/E′ at 1, 2 week decreased compared with that at 0 week (F=3.13 and 3.44, both P<0.05), recovered to baseline at 4, 6, 8 week, E/A at 4, 6, 8 week increased compared with that at 0 week (F=4.01, 3.82 and 3.37, all P<0.05), E′/A′ at 8 week increased compared with that at 0 week (F=3.81, P<0.05). The myocardial pathology showed that RV myocardial cell structure was normal at 4 week. Nuclei enlarged, stain darkened and some cytoplasms loosed when exposed to CIH for 8 weeks. The structure of lung tissues was normal when exposed to CIH for 4 weeks. Inflammatory cell infiltrated, capillary engorged as well as the wall of pulmonary arterioles thickened slightly at 8 week.

Conclusions

RV diastolic and systolic function showed compensatory and structure was normal in early CIH (0-8 week). RV diastolic function compensated earlier than systolic function. IRT and ICT were sensitive indicators of RV systolic and diastolic function compensation.

图1 健康雄性新西兰兔超声心动图表现
表1 慢性间歇性低氧兔超声心动图右心结构参数变化(±s
表2 慢性间歇性低氧兔超声心动图右心室收缩功能参数变化(±s
表3 慢性间歇性低氧兔超声心动图右心室舒张功能参数变化(±s
图2 慢性间歇性低氧新西兰兔右心室心肌病理变化(HE染色×400)
图3 慢性间歇性低氧新西兰兔肺组织病理变化(HE染色×100)
[1]
Lévy P, Ryan S, Oldenburg O, et al. Sleep apnoea and the heart [J]. Eur Respir Rev, 2013, 22(129): 333-352.
[2]
Fagan KA. Selected contribution: Pulmonary hypertension in mice following intermittent hypoxia [J]. J Appl Physiol, 2001, 90(6): 2502-2507.
[3]
Nara A, Nagai H, Shintani-Ishida K, et al. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hypoxia [J]. Am J Respir Cell Mol Biol, 2015, 53(2): 184-192.
[4]
Fletcher EC, Lesske J, Qian W, et al. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats [J]. Hypertension, 1992, 19(6): 555-561.
[5]
McGuire M, MacDermott M, Bradford A. Effects of chronic intermittent asphyxia on rat diaphragm and limb muscle contractility [J]. Chest, 2003, 123(3): 875-881.
[6]
Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography [J]. J Am Soc Echocardiogr, 2010, 23(7): 685-713.
[7]
Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography′s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology [J]. J Am Soc Echocardiogr, 2005, 18(12): 1440-1463.
[8]
王晓芳, 周晓梅, 赵琪平, 等. 慢性常压缺氧对大鼠肺动脉压和右心功能的影响[J]. 基础医学与临床, 1990, 10(4): 19.
[9]
Scherrer-Crosbie M, Steudel W, Hunziker PR, et al. Determination of right ventricular structure and function in normoxic and hypoxic mice: a transesophageal echocardiographic study [J]. Circulation, 1998, 98(10): 1015-1021.
[10]
Bleeker GB, Steendijk P, Holman ER, et al. Assessing right ventricular function: the role of echocardiography and complementary technologies [J]. Heart, 2006, 92(1): 19-26.
[11]
Tei C, Nishimura RA, Seward JB, et al. Noninvasive Doppler-derived myocardial performance index: correlation with simultaneous measurements of cardiac catheterization measurements [J]. J Am Soc Echocardiogr, 1997, 10(2): 169-178.
[12]
Sunderram J, Androulakis IP. Molecular mechanisms of chronic intermittent hypoxia and hypertension [J]. Crit Rev Biomed Eng, 2012, 40(4): 265-278.
[13]
Campen MJ, Shimoda LA, O′Donnell CP. Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice[J]. J Appl Physiol, 2005, 99(5): 2028-2035.
[14]
Brito J, Siques P, Arribas SM, et al. Adventitial alterations are the main features in pulmonary artery remodeling due to long-term chronic intermittent hypobaric hypoxia in rats [J]. Biomed Res Int, 2015: 169841.
[15]
Nisbet RE,Graves AS, Kleinhenz DJ, et al. The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice [J]. Am J Respir Cell Mol Biol, 2009, 40(5): 601-609.
[16]
王璋, 司良毅, 廖友斌, 等. 大鼠睡眠呼吸暂停综合征动物模型的建立[J]. 中国实验动物学报, 2006, 1(14): 40-43.
[1] 张贺彬, 高枫, 郑哲岚, 王晓嫚, 陈丽, 杨寸芯, 胡佩佩. 二维斑点追踪超声心动图对业余马拉松运动员右心室收缩功能的评估[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1091-1097.
[2] 张红梅, 李春梅, 王胰, 张清凤, 丁戈琦, 邓燕, 林薿, 李文华, 尹立雪. 经胸右心声学造影不同右心房增压方式评估卵圆孔未闭隐匿性右向左分流的价值[J]. 中华医学超声杂志(电子版), 2022, 19(06): 508-513.
[3] 朱韵莹, 高晓琳, 戈艳萍, 王张嵩, 林钊宇, 李劲松, 武东辉. 缺氧相关的长链非编码RNA LINC00970在唾液腺腺样囊性癌中的表达及其作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 210-217.
[4] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[5] 江振剑, 蒋明, 黄大莉. 基于决策曲线分析血清E-cad、HIF-1α预测乳腺癌改良根治术治疗预后的临床研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 272-275.
[6] 陈玉婷, 周影, 陆雅斐, 江滨. 缺氧预处理间充质干细胞的功能及机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 115-120.
[7] 王星月, 舒亮辉, 朝亚. 罗沙司他在炎症反应中的作用研究进展[J]. 中华肾病研究电子杂志, 2023, 12(02): 101-104.
[8] 冷玥祺, 廖衍沣, 武歆纯, 李美瑶, 石逸雯, 王晋豪, 杨嘉瑞, 李学民. 环境因素对眼部生理与病理影响的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 109-113.
[9] 肖海燕, 段业英, 吴玥琳, 伍丽婵, 唐灏珂. 神经学音乐治疗心搏骤停后缺血缺氧性脑病产妇一例[J]. 中华重症医学电子杂志, 2023, 09(02): 217-224.
[10] 梁玉兰, 陈亮, 曾令梅. NLR、RDW水平联合振幅整合脑电图在缺氧缺血性脑病患儿的预后研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(02): 84-89.
[11] 李变, 王莉娜, 桑田, 李珊, 杜雪燕, 李春华, 张兴云, 管巧, 王颖, 冯琪, 蒙景雯. 亚低温技术治疗缺氧缺血性脑病新生儿的临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 639-643.
[12] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[13] 刘新献, 王雅琪, 周斌, 郭严延. 雷帕霉素在兔腐蚀性食管炎性狭窄早期干预中的意义[J]. 中华介入放射学电子杂志, 2023, 11(04): 324-329.
[14] 肖莹莹, 田茵琦, 彭雪梅. 减重手术胃肠道血流量下降的原因及干预措施[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 179-185.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要