切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2017, Vol. 14 ›› Issue (09) : 644 -647. doi: 10.3877/cma.j.issn.1672-6448.2017.09.002

所属专题: 乳腺超声 文献

综述

自动乳腺超声检查:回顾与展望
唐郭雪1, 李安华1, 林僖1,()   
  1. 1. 510060 广州,中山大学肿瘤防治中心超声心电科 华南肿瘤学国家重点实验室 肿瘤医学协同创新中心
  • 收稿日期:2017-05-11 出版日期:2017-09-01
  • 通信作者: 林僖

Retrospect and prospect of automated breast ultrasound

Guoxue Tang1, Anhua Li1, Xi Lin1()   

  • Received:2017-05-11 Published:2017-09-01
  • Corresponding author: Xi Lin
引用本文:

唐郭雪, 李安华, 林僖. 自动乳腺超声检查:回顾与展望[J]. 中华医学超声杂志(电子版), 2017, 14(09): 644-647.

Guoxue Tang, Anhua Li, Xi Lin. Retrospect and prospect of automated breast ultrasound[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2017, 14(09): 644-647.

表1 自动乳腺超声应用于乳腺癌筛查结果
[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2):115-132.
[2]
Evans WP. Breast cancer screening: Successes and challenges [J]. CA Cancer J Clin, 2012, 62(1):5-9.
[3]
Shen S, Zhou Y, Xu Y, et al. A multi-centre randomised trial comparing ultrasound vs mammography for screening breast cancer in high-risk Chinese women [J]. Br J Cancer, 2015, 112(6):998-1004.
[4]
Berg WA, Blume JD, Cormack JB, et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer [J]. JAMA, 2008, 299(18):2151-2163.
[5]
Dick DE, Elliott RD, Metz RL, et al. A new automated, high resolution ultrasound breast scanner [J]. Ultrason Imaging, 1979, 1(4):368-377.
[6]
Wang H, Jiang Y, Zhu Q, et al. Differentiation of benign and malignant breast lesions: A comparison between automatically generated breast volume scans and handheld ultrasound examinations [J]. Eur J Radiol, 2012, 81(11):3190-3200.
[7]
Lin X, Wang J, Han F, et al. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound [J]. Eur J Radiol, 2012, 81(5):873-878.
[8]
Li N, Jiang Y, Zhu Q, et al. Accuracy of an automated breast volume ultrasound system for assessment of the pre-operative extent of pure ductal carcinoma in situ: comparison with a conventional handheld ultrasound examination [J]. Ultrasound Med Biol, 2013, 39(12):2255-2263.
[9]
Xiao Y, Chen Z, Zhou Q, et al. The efficacy of automated breast volume scanning over conventional ultrasonography among patients with breast lesions [J]. Int J Gynecol Obstet, 2015, 131(3):293-296.
[10]
Wilczek B, Wilczek HE, Rasouliyan L, et al. Adding 3D automated breast ultrasound to mammography screening in women with heterogeneously and extremely dense breasts: Report from a hospital-based, high-volume, single-center breast cancer screening program [J]. Eur J Radiol, 2016, 85(9):1554-1563.
[11]
Xiao Y, Zhou Q, Chen Z. Automated breast volume scanning versus conventional ultrasound in breast cancer screening [J]. Acad Radiol, 2015, 22(3):387-399.
[12]
McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis [J]. Cancer Epidemiol Biomarkers Pre, 2006, 15(6):1159-1169.
[13]
Moon WK, Shen YW, Huang CS, et al. Comparative study of density analysis using automated whole breast ultrasound and MRI [J]. Med Phys, 2011, 38(1):382-389.
[14]
Moon WK, Lo CM, Chang JM, et al. Rapid breast density analysis of partial volumes of automated breast ultrasound images [J]. Ultrason Imaging, 2013, 35(4):333-343.
[15]
Chen JH, Lee YW, Chan SW, et al. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging [J]. Ultrasound Med Biol, 2016, 42(5):1211-1220.
[16]
Chang RF, Hou YL, Lo CM, et al. Quantitative analysis of breast echotexture patterns in automated breast ultrasound images [J]. Med Phys, 2015, 42(8):4566-4578.
[17]
Brem RF, Tabar L, Duffy SW, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study [J]. Radiology, 2015, 274(3):663-673.
[18]
Kelly KM, Dean J, Comulada WS, et al. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts [J]. Eur Radiol, 2010, 20(3):734-742.
[19]
Giuliano V, Giuliano C. Improved breast cancer detection in asymptomatic women using 3D-automated breast ultrasound in mammographically dense breasts [J]. Clin Imaging, 2013, 37(3):480-486.
[20]
Choi WJ, Cha JH, Kim HH, et al. Comparison of automated breast volume scanning and hand- held ultrasound in the detection of breast cancer: an analysis of 5,566 patient evaluations [J]. Asian Pac J Cancer Prev, 2014, 15(21):9101-9105.
[21]
Hellgren R, Dickman P, Leifland K, et al. Comparison of handheld ultrasound and automated breast ultrasound in women recalled after mammography screening [J]. Acta Radiol, 2017, 58(5):515-520.
[22]
Kotsianos-Hermle D, Wirth S, Fischer T, et al. First clinical use of a standardized three-dimensional ultrasound for breast imaging [J]. Eur J Radiol, 2009, 71(1):102-108.
[23]
Wojcinski S, Farrokh A, Hille U, et al. The Automated Breast Volume Scanner (ABVS): initial experiences in lesion detection compared with conventional handheld B-mode ultrasound: a pilot study of 50 cases [J]. Int J Womens Health, 2011, 3:337-346.
[24]
Giger ML, Inciardi MF, Edwards A, et al. Automated Breast Ultrasound in Breast Cancer Screening of Women With Dense Breasts: Reader Study of Mammography-Negative and Mammography-Positive Cancers. AJR Am J Roentgenol, 2016, 206(6):1341-1350.
[25]
Drukker K, Horsch KJ, Pesce LL, et al. Interreader scoring variability in an observer study using dual-modality imaging for breast cancer detection in women with dense breasts [J]. Acad Radiol, 2013, 20(7):847-853.
[26]
Chang JM, Cha JH, Park JS, et al. Automated breast ultrasound system (ABUS): reproducibility of mass localization, size measurement, and characterization on serial examinations [J]. Acta Radiol, 2015, 56(10):1163-1170.
[27]
Zheng FY, Yan LX, Huang BJ, et al. Comparison of retraction phenomenon and BI-RADS-US descriptors in differentiating benign and malignant breast masses using an automated breast volume scanner [J]. Eur J Radiol, 2015, 84(11):2123-2129.
[28]
Van Zelst JCM, Platel B, Karssemeijer N, et al. Multiplanar Reconstructions of 3D Automated Breast Ultrasound Improve Lesion Differentiation by Radiologists [J]. Acad Radiol, 2015, 22(12):1489-1496.
[29]
Wenkel E, Heckmann M, Heinrich M, et al. Automated breast ultrasound: lesion detection and BI-RADS classification--a pilot study [J]. Rofo, 2008, 180(9):804-808.
[30]
Jeh SK, Kim SH, Choi JJ, et al. Comparison of automated breast ultrasonography to handheld ultrasonography in detecting and diagnosing breast lesions [J]. Acta Radiol, 2016, 57(2):162-169.
[31]
Shin HJ, Kim HH, Cha JH, et al. Automated ultrasound of the breast for diagnosis: interobserver agreement on lesion detection and characterization [J]. AJR Am J Roentgenol, 2011, 197(3):747-754.
[32]
Prosch H, Halbwachs C, Strobl C, et al. [Automated breast ultrasound vs. handheld ultrasound: BI-RADS classification, duration of the examination and patient comfort] [J]. Ultraschall Med, 2011, 32(5):504-510.
[33]
Skaane P, Gullien R, Eben EB, et al. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: a reader performance study [J]. Acta Radiol, 2015, 56(4):404-412.
[34]
Zhang J, Lai X, Zhu Q, et al. Interobserver agreement for sonograms of breast lesions obtained by an automated breast volume scanner [J]. Eur J Radiol, 2012, 81(9):2179-2183.
[35]
Kuzmiak CM, Ko EY, Tuttle LA, et al. Whole Breast Ultrasound Comparison of the Visibility of Suspicious Lesions with Automated Breast Volumetric Scanning Versus Hand-Held Breast Ultrasound [J]. Acad Radiol, 2015, 22(7):870-879.
[36]
Chang JM, Moon WK, Cho N, et al. Breast cancers initially detected by hand-held ultrasound: detection performance of radiologists using automated breast ultrasound data [J]. Acta Radiol, 2011, 52(1):8-14.
[37]
Arleo EK, Saleh M, Ionescu D, et al. Recall rate of screening ultrasound with automated breast volumetric scanning (ABVS) in women with dense breasts: a first quarter experience [J]. Clin Imaging, 2014, 38(4):439-444.
[38]
van Zelst JCM, Tan T, Platel B, et al. Improved cancer detection in automated breast ultrasound by radiologists using Computer Aided Detection [J]. Eur J Radiol, 2017, 89:54-59.
[39]
Tan T, Platel B, Mus R, et al. Computer-aided detection of cancer in automated 3-D breast ultrasound [J]. IEEE Trans Med Imaging, 2013, 32(9):1698-1706.
[40]
Tan T, Mordang J, van Zelst J, et al. Computer-aided detection of breast cancers using Haar-like features in automated 3D breast ultrasound [J]. Med Phys, 2015, 42(4):1498-1504.
[41]
Tan T, Gubern-Mérida A, Borelli C, et al. Segmentation of malignant lesions in 3D breast ultrasound using a depth-dependent model [J]. Med Phys, 2016, 43(7):4074-4084.
[42]
Moon WK, Shen YW, Bae MS, et al. Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images [J]. IEEE Trans Med Imaging, 2013, 32(7):1191-1200.
[43]
Moon WK, Lo C, Chen R, et al. Tumor detection in automated breast ultrasound images using quantitative tissue clustering [J]. Med Phys, 2014, 41(4):42901.
[44]
Lo C, Chen R, Chang Y, et al. Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed [J]. IEEE Trans Med Imaging, 2014, 33(7):1503-1511.
[45]
Lo C, Chan S, Yang Y, et al. Feasibility Testing: Three-dimensional Tumor Mapping in Different Orientations of Automated Breast Ultrasound [J]. Ultrasound Med Biol, 2016, 42(5):1201-1210.
[46]
Moon WK, Shen Y, Huang C, et al. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images [J]. Ultrasound Med Biol, 2011, 37(4):539-548.
[47]
Moon WK, Lo CM, Chang JM, et al. Computer-aided classification of breast masses using speckle features of automated breast ultrasound images [J]. Med Phys, 2012, 39(10):6465-6473.
[48]
Tan T, Platel B, Huisman H, et al. Computer-aided lesion diagnosis in automated 3-D breast ultrasound using coronal spiculation [J]. IEEE Trans Med Imaging, 2012, 31(5):1034-1042.
No related articles found!
阅读次数
全文


摘要