切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (04) : 247 -251. doi: 10.3877/cma.j.issn.1672-6448.2019.04.003

所属专题: 乳腺超声 文献

专题笔谈

人工智能在乳腺癌诊治中的应用与思考
罗晓1, 李安华1,()   
  1. 1. 510060 广州,中山大学肿瘤防治中心超声心电科 华南肿瘤学国家重点实验室 肿瘤医学协同创新中心
  • 收稿日期:2019-03-10 出版日期:2019-04-01
  • 通信作者: 李安华

Application of artificial intelligence in breast cancer

Xiao Luo1, Anhua Li1()   

  • Received:2019-03-10 Published:2019-04-01
  • Corresponding author: Anhua Li
引用本文:

罗晓, 李安华. 人工智能在乳腺癌诊治中的应用与思考[J]. 中华医学超声杂志(电子版), 2019, 16(04): 247-251.

Xiao Luo, Anhua Li. Application of artificial intelligence in breast cancer[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(04): 247-251.

1
寿君妮, 于观贞, 余党会, 等. 人工智能与医学——发展历程 [J]. 第二军医大学学报, 2018, 39(8): 806.
2
Vyborny CJ, Giger ML. Computer vision and artificial intelligence in mammography [J]. AJR Am J Roentgenol, 1994, 162(3): 699-708.
3
李志勇, 李鹏伟, 高小燕, 等. 人工智能医学技术发展的聚焦领域与趋势分析 [J]. 中国医学装备, 2018, 15(7): 136-145.
4
Israni ST, Verghese A. Humanizing Artificial Intelligence [J]. JAMA, 2019, 321(1): 29-30.
5
He J, Baxter SL, Xu J, et al. The practical implementation of artificial intelligence technologies in medicine [J]. Nat Med, 2019, 25(1): 30-36.
6
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications [J]. CA Cancer J Clin, 2019, 69(2): 127-157.
7
Coiera E. The fate of medicine in the time of AI [J]. Lancet, 2018, 392(10162): 2331-2332.
8
National Comprehensive Cancer Network. Breast Cancer [EB/OL].(2019-03-14) [2019-03-19].

URL    
9
National Cancer Institute. Annual Report to the Nation 2018: National Cancer Statistics [EB/OL]. (2018-05-22) [2019-03-19].

URL    
10
Marmot MG, Altman DG, Cameron DA, et al. The benefits and harms of breast cancer screening: an independent review [J]. Br J Cancer, 2013, 108(11): 2205-2240.
11
Sprague BL, Arao RF, Miglioretti DL, et al. National Performance Benchmarks for Modern Diagnostic Digital, Mammography: Update from the Breast Cancer Surveillance, Consortium [J]. Radiology, 2017, 283(1): 59-69.
12
余立君. 乳腺癌早期诊断设备及其技术进展——乳腺CAD、电阻抗、电子触诊、激光等技术进展(三) [J]. 中国医疗设备, 2010, 25(9): 54-56.
13
Marinovich ML, Hunter KE, Macaskill P, et al. Breast Cancer Screening Using Tomosynthesis or Mammography: A Meta-analysis of Cancer Detection and Recall [J]. J Natl Cancer Inst, 2018, 110(9): 942-949.
14
Aboutalib SS, Mohamed AA, Berg WA, et al. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening [J]. Clin Cancer Res, 2018, 24(23): 5902-5909.
15
Chan HP, Lo SC, Sahiner B, et al. Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network [J]. Med Phys, 1995, 22(10): 1555.
16
王晓行. 乳腺癌AI辅助诊断系统获得CFDA认证,部分病变检出率高达96% -动脉网[EB/OL]. (2017-05-16) [2019-03-19]

URL    
17
National Comprehensive Cancer Network. Breast Cancer Screening and Diagnosis [EB/OL]. (2018-10-04) [2019-03-19].

URL    
18
Summary of safety and effectiveness [EB/OL ]. (2017-06-05) [2019-03-19].

URL    
19
李俊来, 宋丹绯, 张艳, 等. B-CAD辅助乳腺超声检查诊断乳腺癌的价值 [J]. 中国超声医学杂志, 2009, 25(2): 124-127.
20
Yap MH, Pons G, Marti J, et al. Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks [J]. IEEE J Biomed Health Inform, 2018, 22(4): 1218-1226.
21
Drukker K, Sennett CA, Giger ML, et al. Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts [J]. Med Phys, 2013, 41(1): 012901.
22
van Zelst J, Tan T, Clauser P, et al. Dedicated computer-aided detection software for automated 3D breast ultrasound; an efficient tool for the radiologist in supplemental screening of women with dense breasts [J]. Eur Radiol, 2018, 28(7): 1-11.
23
Berg WA, Blume JD, Cormack J, et al. Combined Screening With Ultrasound and Mammography vs Mammography Alone in Women at Elevated Risk of Breast Cancer [J]. JAMA, 2008, 299(18): 2151-2163.
24
Zhang X, Lin X, Tan Y, et al. A multicenter hospital-based diagnosis study of automated breast ultrasound system in detecting breast cancer among Chinese women [J]. Chin J Cancer Res, 2018, 30(2): 231-239.
25
Xu X, Bao L, Tan Y, et al. 1000-Case Reader Study of Radiologists′ Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System [J]. Ultrasound Med Biol, 2018, 44(8): 1694-1702.
26
Wang N, Bian C, Wang Y, et al. Densely Deep Supervised Networks with Threshold Loss for Cancer Detection in Automated Breast Ultrasound [C]. medical image computing and computer assisted intervention, 2018: 641-648.
27
Wood C. Computer Aided Detection (CAD) for breast MRI [J]. Technol Cancer Res Treat, 2005, 4(1): 49-53.
28
Chamming′s F, Ueno Y, Ferré R, et al. Features from Computerized Texture Analysis of Breast Cancers at Pretreatment MR Imaging Are Associated with Response to Neoadjuvant Chemotherapy [J]. Radiology, 2017, 286(2): 412-420.
29
Saha A, Harowicz MR, Grimm LJ, et al. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features [J]. Br J Cancer, 2018, 119(4): 508-516.
30
Ravdin PM, Siminoff LA, Davis GJ, et al. Computer Program to Assist in Making Decisions About Adjuvant Therapy for Women With Early Breast Cancer [J]. J Clin Oncol, 2001, 19(4): 980-991.
31
Olivotto IA, Bajdik C, Ravdin PM, et al. Population-Based Validation of the Prognostic Model ADJUVANT! for Early Breast Cancer [J]. J Clin Oncol, 2005, 23(12): 2716-2725.
32
Giger ML, Deasy JO. MO-FG-207B-00: State-of-the-Art in Radiomics in Radiology and Radiation Oncology [J]. Medical Physics, 2016, 43(6): 3715-3715.
33
Amin MB, Edge SB, Greene FL, et al. AJCC Cancer Staging Manual. 8th ed [M]. NewYork: Springer, 2017.
34
Bejnordi BE, Veta M, Van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210.
35
Bejnordi BE, Veta M, Van Diest PJ, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer [J]. JAMA, 2017, 318(22): 2199-2210.
36
Somashekhar SP, Sepulveda M, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board [J]. Ann Oncol, 2018, 29(2): 418-423.
37
Loprinzi CL, Thome SD. Understanding the Utility of Adjuvant Systemic Therapy for Primary Breast Cancer [J]. J Clin Oncol, 2001, 19(4): 972-979
38
Zacharakis N, Chinnasamy H, Black MA, et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer [J]. Nat Med, 2018, 24(6): 724-730.
39
Keren L, Bosse M, Marquez D, et al. A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging [J]. Cell, 2018, 174(6): 1373-1387.e19.
40
Lotsch J, Sipila R, Tasmuth T, et al. Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy [J]. Breast Cancer Res Treat, 2018, 171(2): 399-411.
No related articles found!
阅读次数
全文


摘要