切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (08) : 561 -564. doi: 10.3877/cma.j.issn.1672-6448.2019.08.001

所属专题: 总编推荐 文献

述评

动态超声弹性成像的现状及展望
李国洋1, 郑阳1, 刘燕霖1, 江宇轩1, 徐玮强1, 曹艳平1,()   
  1. 1. 100084 北京,清华大学航天航空学院工程力学系 生物力学与医学工程研究所
  • 收稿日期:2019-06-20 出版日期:2019-08-01
  • 通信作者: 曹艳平

Current situation and prospect of dynamic ultrasound elastography

Guo Yang Li1, Yang Zheng1, Yanlin Liu1   

  • Received:2019-06-20 Published:2019-08-01
引用本文:

李国洋, 郑阳, 刘燕霖, 江宇轩, 徐玮强, 曹艳平. 动态超声弹性成像的现状及展望[J]. 中华医学超声杂志(电子版), 2019, 16(08): 561-564.

Guo Yang Li, Yang Zheng, Yanlin Liu. Current situation and prospect of dynamic ultrasound elastography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(08): 561-564.

图1 动态超声弹性成像方法的关键步骤
图2 基于弹性切伦科夫效应表征骨骼肌3个独立弹性参数。图a、d分别表示测量μL时的探头角度和计算公式;图b、e分别表示测量μT时的探头角度和计算公式;图c、f分别表示测量EL时的探头角度和计算公式。μLEL分别表示沿肌肉纤维方向的剪切模量和杨氏模量,μT表示垂直纤维方向的剪切模量
图3 不同直径的肿瘤体模及其动态超声弹性成像结果。左图为不同直径肿瘤体模的常规超声图像,右图为与不同直径肿瘤体膜常规超声图像对应的剪切波弹性成像及弹性模量值
1
Fung YC. Introduction: a sketch of the history and scope of the field [M]//Fung YC. Biomechanics. New York: Springer, 1993: 1-22.
2
Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics [J]. Ultrasound Med Biol, 1998, 24(9): 1419-1435.
3
Bercoff J, Tanter M, Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2004, 51(4): 396-409.
4
Cosgrove D, Piscaglia F, Bamber J, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications [J]. Ultraschall Med, 2013, 34(3): 238-253.
5
Berg WA, Cosgrove DO, Doré CJ, et al. Shear-wave elastography improves the specificity of breast us: The be1 multinational study of 939 masses [J]. Radiology, 2012, 262(2): 435-449.
6
Song P, Zhao H, Manduca A, et al. Comb-push ultrasound shear elastography (cuse): A novel method for two-dimensional shear elasticity imaging of soft tissues [J]. IEEE Trans Med Imaging, 2012, 31(9): 1821-1832.
7
Bercoff J, Tanter M, Fink M. Sonic boom in soft materials: The elastic cerenkov effect [J]. Appl Phys Lett, 2004, 84(12): 2202-2204.
8
何琼, 罗建文. 超高速超声成像的研究进展 [J]. 中国医学影像技术, 2014(8), 1251-1255.
9
Ogden RW. Incremental statics and dynamics of pre-stressed elastic materials [M] // Waves in nonlinear pre-stressed materials. Vienna: Springer, 2007: 1-26.
10
Hughes DS, Kelly JL. Second-order elastic deformation of solids [J]. Phys Rev, 1953, 92: 1145-1149.
11
Gennisson JL, Rénier M, Catheline S, et al. Acoustoelasticity in soft solids: Assessment of the nonlinear shear modulus with the acoustic radiation force [J]. J Acoust Soc Am, 2007, 122(6): 3211-3219.
12
Jiang Y, Li GY, Qian LX, et al. Characterization of the nonlinear elastic properties of soft tissues using the supersonic shear imaging (ssi) technique: Inverse method, ex vivo and in vivo experiments [J]. Med Image Anal, 2015, 20(1): 97-111.
13
Jiang Y, Li G, Qian LX, et al. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis [J]. Biomech Model Mechanobiol, 2015, 14(5): 1119-1128.
14
Bernal M, Chamming′s F, Couade M, et al. In vivo quantification of the nonlinear shear modulus in breast lesions: Feasibility study [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2016, 63(1): 101-109.
15
Greenleaf JF, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues [J]. Annu Rev Biomed Eng, 2003, 5: 57-78.
16
张海澜. 理论声学 [M]. 北京: 高等教育出版社, 2012: 422-485.
17
Rouze NC, Wang MH, Palmeri ML, et al. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium [J]. J Biomech, 2013, 46(16): 2761-2768.
18
Gennisson JL, Deffieux T, Macé E, et al. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging [J]. Ultrasound Med Biol, 2010, 36(5): 789-801.
19
Lee WN, Pernot M, Couade M, et al. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging [J]. IEEE Trans Med Imaging, 2012, 31(3): 554-562.
20
Wang M, Byram B, Palmeri M, et al. Imaging transverse isotropic properties of muscle by monitoring acoustic radiation force induced shear waves using a 2-d matrix ultrasound array [J]. IEEE Trans Med Imaging, 2013, 32(9): 1671-1684.
21
Li GY, He Q, Qian LX, et al. Elastic cherenkov effects in transversely isotropic soft materials-ii: Ex vivo and in vivo experiments [J]. J Mech Phys Solids, 2016, 94: 181-190.
22
Li GY, Zheng Y, Liu Y, et al. Elastic cherenkov effects in transversely isotropic soft materials-i: Theoretical analysis, simulations and inverse method [J]. J Mech Phys Solids, 2016, 96: 388-410.
23
Rose JL. Ultrasonic guided waves in solid media [M]. New York: Cambridge University Press, 2014: 16-32.
24
Couade M, Pernot M, Prada C, et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging [J]. Ultrasound Med Biol, 2010, 36(10): 1662-1676.
25
Bernal M, Nenadic I, Urban MW, et al. Material property estimation for tubes and arteries using ultrasound radiation force and analysis of propagating modes [J]. J Acoust Soc Am, 2011, 129(3): 1344-1354.
26
Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2005, 52(11): 1931-1942.
27
Li GY, He Q, Jia L, et al. An inverse method to determine arterial stiffness with guided axial waves [J]. Ultrasound Med Biol, 2017, 43(2): 505-516.
28
Li GY, He Q, Xu G, et al. An ultrasound elastography method to determine the local stiffness of arteries with guided circumferential waves [J]. J Biomech, 2017, 51: 97-104.
29
Li GY, Zheng Y, Jiang YX, et al. Guided wave elastography of layered soft tissues [J]. Acta Biomater, 2019, 84: 293-304.
No related articles found!
阅读次数
全文


摘要