切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (10) : 735 -741. doi: 10.3877/cma.j.issn.1672-6448.2019.10.005

所属专题: 文献

心血管超声影像学

平板运动负荷超声心动图结合心肌声学造影对运动中高血压反应患者心肌微循环的评估
王胰1, 郭智宇2, 张红梅1, 张清凤1, 丁戈琦1, 尹立雪1,()   
  1. 1. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 四川省人民医院
    2. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 通用电气心血管超声临床科研部
  • 收稿日期:2019-05-09 出版日期:2019-10-01
  • 通信作者: 尹立雪

Evaluation of myocardial microcirculation in patients with hypertensive responses after exercise by treadmill exercise stress echocardiography and myocardial contrast echocardiography

Yi Wang1, Zhiyu Guo2, Hongmei Zhang1, Qingfeng Zhang1, Geqi Ding1, Lixue Yin1,()   

  1. 1. Key Laboratory of Ultrasound in Cardiac Electrophysiology and Biomechanics of Sichuan Province, Sichuan Provincial People′s Hospital
    2. Key Laboratory of Ultrasound in Cardiac Electrophysiology and Biomechanics of Sichuan Province, GE Cardiovascular Ultrasound Clinical & Research Department, Chengdu 610072, China
  • Received:2019-05-09 Published:2019-10-01
  • Corresponding author: Lixue Yin
  • About author:
    Corresponding author: Yin Lixue, Email:
引用本文:

王胰, 郭智宇, 张红梅, 张清凤, 丁戈琦, 尹立雪. 平板运动负荷超声心动图结合心肌声学造影对运动中高血压反应患者心肌微循环的评估[J]. 中华医学超声杂志(电子版), 2019, 16(10): 735-741.

Yi Wang, Zhiyu Guo, Hongmei Zhang, Qingfeng Zhang, Geqi Ding, Lixue Yin. Evaluation of myocardial microcirculation in patients with hypertensive responses after exercise by treadmill exercise stress echocardiography and myocardial contrast echocardiography[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(10): 735-741.

目的

采用平板运动负荷超声心动图结合心肌声学造影技术评估运动中高血压反应(HRE)对心肌功能的影响。

方法

选取2017年1月至2018年12月于四川省人民医院进行平板运动负荷超声心动图,同时运动过程中出现高血压反应的患者32例(HRE组)及同期进行平板运动负荷超声心动图且结果正常者28例(对照组),运用平板运动负荷超声心动图结合心肌声学造影技术分别于基线状态及运动后即刻采集常规超声心动图及心肌灌注图像,比较不同状态下2组的运动耐量、血压、左心房和左心室大小、心室壁相对厚度、不同阶段左心室收缩功能和舒张功能及心肌灌注参数。

结果

基线状态下,HRE组E/e′高于对照组,差异有统计学意义(t=3.018,P<0.05)。HRE组运动耐量参数低于对照组,差异有统计学意义(t=4.786,P<0.01);HRE组中10例出现ST段水平或下斜型压低≥0.1 mV,对照组中无一例出现ST段改变,2组比较差异有统计学意义(χ2=24.97,P<0.01);对照组中仅1例于运动期间出现偶发房性早搏,而HRE组中5例于运动期间出现房性或室性早搏,2组比较差异有统计学意义(χ2=21.45,P<0.05);HRE组峰值期收缩压高于对照组,2组比较差异有统计学意义(t=2.131,P<0.05);HRE组中6例出现广泛性心室壁运动幅度降低,对照组均未出现节段性心室壁运动异常,2组比较差异有统计学意义(χ2=18.58,P<0.05);HRE组运动后e′、运动后E/e′高于对照组,2组比较差异均有统计学意义(t=2.472、3.018,P均<0.05)。基线状态下,HRE组与对照组的心内膜下心肌及心外膜下心肌的心肌血流速度、造影峰值强度和心肌血流量(MBF)比较,差异均无统计学意义(P均>0.05)。运动后即刻观察,HRE组心内膜下心肌广泛出现造影剂稀疏改变,其心肌血流速度、造影峰值强度、MBF均低于对照组,差异均有统计学意义(t=3.692、2.582、4.673,P均<0.05);心外膜下心肌灌注参数造影峰值强度2组间差异无统计学意义(P>0.05),但HRE组的心肌血流速度、MBF值低于对照组,2组比较差异均有统计学意义(t=3.147、2.375,P均<0.05)。将HRE组中出现广泛性心室壁运动幅度降低的6例与其余26例的灌注参数进行对比发现,运动幅度降低组与未降低组之间比较,运动后即刻运动幅度降低组心内膜下心肌的心肌血流速度、造影峰值强度、MBF均低于未降低组,差异均有统计学意义(t=3.487、2.453、4.298,P均<0.05)。

结论

HRE患者左心室舒张功能明显降低,心肌灌注特别是心内膜下心肌微循环明显受损。平板运动负荷超声心动图作为一项简单、无创评估心脏功能的方法,结合心肌声学造影技术可在常规超声心动图正常情况下早期发现HRE患者心肌微循环功能异常,对HRE人群心脏功能异常的早期诊断及远期随访有重要的临床应用价值。

Objective

To evaluate the effect of hypertensive responses (HRE) on myocardial function by treadmill exercise stress echocardiography (ESE) and myocardial contrast echocardiography (MCE).

Methods

Thirty-two patients with HRE were enrolled as an HRE group and 28 adults with negative stress echocardiography results were included as a control group from January 2017 to December 2018 at Sichuan Provincial People′s Hospital. Treadmill ESE combined with MCE were used to acquire the 2D and myocardial perfusion images at baseline and after exercises. The exercise capacity, blood pressure (BP), left atria (LA) and left ventricle (LV) volume, relative wall thickness (RWT), LV systolic function, LV diastolic function, and myocardial perfusion parameters during different stages were compared between the two groups.

Results

At baseline, the E/e' in the HRE group was significantly higher than that in the control group (t=3.018, P<0.05). The exercise tolerance parameter (METs) in the HRE group was significantly lower than that in the control group (t=4.786, P<0.01). In the HRE group, ST-segment depression≥ 0.1 mV with level/down-slope type appeared in 10 cases, and none of the control group showed ST-segment changes (χ2=24.97, P<0.01). One subject had atrial premature heartbeat in the control group, while there were five cases of atrial/ventricular premature heartbeat in the HRE groups; there was a statistically significant difference between the two groups (χ2=21.45, P<0.05). The peak SBP in the HRE group was significantly higher than that in the control group (t=2.131, P<0.05). Wall motion abnormalities were observed in six cases in the HRE group, while there was no wall motion abnormalities in the control group (χ2=18.58, P<0.05). e′ and E/e′ after exercise were significantly higher in cases than in controls (t=2.472 and 3.018, respectively, P<0.05). At baseline, there was no significant difference in myocardial blood flow velocity (k), peak intensity (A), or myocardial blood flow (MBF) between the two groups (P>0.05). Immediately after exercise, the k, A, and MBF of the subendocardial myocardium in the HRE group were significantly lower than those of the control group (t=3.692, 2.582, and 4.673, respectively, P<0.05). There was no significant difference in the subepicardial myocardium perfusion parameter A between the two groups (P>0.05). The k and MBF values in the subepicardial myocardium in the HRE group were significantly lower those of the control group (t=3.147 and 2.375, respectively, P<0.05). We also compared the perfusion parameters between the six subjects with low wall motion and the other 26 subjects with normal wall motion in the HRE group. We found that k, A, and MBF of the subendocardial myocardium after exercise were significantly lower in the low wall motion group (t=3.487, 2.453, and 4.298, respectively, P<0.05).

Conclusion

LV diastolic function is significantly reduced in patients with HRE, and myocardial perfusion, especially subendocardial myocardial microcirculation, is significantly impaired. Treadmill ESE is a simple, non-invasive method for assessing cardiac function, and it can be used to early detect myocardial microcirculation dysfunction in HRE patients with normal rest conventional echocardiography images if combined with MCE. These two combined techniques might have important value in early diagnosis and long-term follow-up of cardiac dysfunction in HRE patients.

表1 HRE组与对照组一般临床资料比较(±s
表2 HRE组与对照组基线状态下常规超声心动图参数比较(±s
表3 HRE组与对照组平板运动负荷超声心动图参数比较(±s
表4 HRE组与对照组心肌声学造影参数比较(±s
图1 运动中高血压反应患者及正常健康者的心肌声学造影灌注图像。图a为运动中高血压反应患者运动后即刻行心肌声学造影检查,心内膜下心肌广泛出现灌注稀疏改变;图b为正常健康者运动后即刻行心肌声学造影检查,心内膜下心肌与心外膜下心肌造影峰值强度无明显差异(图中黄色圆圈和曲线所示为心外膜下取样容积及心肌灌注曲线,绿色圆圈和曲线所示为心内膜下取样容积及心肌灌注曲线);图c为运动中高血压反应患者运动后即刻行心肌声学造影检查,心内膜下心肌造影峰值强度、心肌血流速度均低于心外膜下心肌(图中黄色圆圈和曲线为心外膜下取样容积及心肌灌注曲线,绿色圆圈和曲线为心内膜下取样容积及心肌灌注曲线)
[1]
Itoh H, Ajisaka R, Koike A, et al. Heart rate and blood pressure response to ramp exercise and exercise capacity in relation to age, gender, and mode of exercise in a healthy population [J]. J Cardiol, 2013, 61(1): 71-78.
[2]
Mancia G, Faggard R, Narkiewicz K, et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension [J]. J Hypertens, 2013, 31(10): 1925-1938.
[3]
Schultz MG, La Gerche A, and Sharman JE. Blood Pressure Response to Exercise and Cardiovascular Disease [J]. Curr Hypertens Rep, 2017, 19(11): 89.
[4]
Sun L, Wang Z, Xu T, et al. The value of real-time myocardial contrast echocardiography for detecting coronary microcirculation function in coronary artery disease patients [J]. Anatol J Cardiol, 2018, 19(1): 27-33.
[5]
Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association [J]. Circulation, 2005, 111(5): 682-696.
[6]
Tzemos N, Lim PO, Mackenzie IS, et al. Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease [J]. J Clin Hypertens (Greenwich), 2015, 17(11): 837-844.
[7]
Stewart KJ, Sung J, Silber HA, et al. Exaggerated exercise blood pressure is related to impaired endothelial vasodilator function [J]. Am J Hypertens, 2004, 17(4): 314-320.
[8]
Thanassoulis G, Lyass A, Benjamin EJ, et al. Relations of exercise blood pressure response to cardiovascular risk factors and vascular function in the Framingham Heart Study [J]. Circulation, 2012, 125(23): 2836-2843.
[9]
Schultz MG, Otahal P, Cleland VJ, et al. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: a systematic review and meta-analysis [J]. Am J Hypertens, 2013, 26(3): 357-366.
[10]
Manolio TA, Burke GL, Savage PJ, et al. Exercise blood pressure response and 5-year risk of elevated blood pressure in a cohort of young adults: the CARDIA study [J]. Am J Hypertens, 1994, 7(3): 234-241.
[11]
Youn JC, Kang SM. Cardiopulmonary Exercise Test in Patients with Hypertension: Focused on Hypertensive Response to Exercise [J]. Pulse (Basel), 2015, 3(2): 114-117.
[12]
Fagard RH, Pardaens K, Staessen JA, et al. Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men [J]. Hypertension, 1996, 28(1): 31-36.
[13]
Vigil Medina L, Garcia Carretero R. Hypertensive response to exercise: Does it has prognostic implications? [J]. Rev Clin Esp, 2019. [Epub ahead of print].
[14]
Takamura T, Onishi K, Sugimoto T, et al. Patients with a hypertensive response to exercise have impaired left ventricular diastolic function [J]. Hypertens Res, 2008, 31(2): 257-263.
[15]
Kim D, Ha JW. Hypertensive response to exercise: mechanisms and clinical implication [J]. Clin Hypertens, 2016, 22: 17.
[16]
Shim CY, Ha JW, Park S, et al. Exaggerated blood pressure response to exercise is associated with augmented rise of angiotensin II during exercise [J]. J Am Coll Cardiol, 2008, 52(4): 287-292.
[17]
Mottram PM, Haluska B, Yuda S, et al. Patients with a hypertensive response to exercise have impaired systolic function without diastolic dysfunction or left ventricular hypertrophy [J]. J Am Coll Cardiol, 2004, 43(5): 848-853.
[18]
Lauer MS, Levy D, Anderson KM, et al. Is there a relationship between exercise systolic blood pressure response and left ventricular mass? The Framingham Heart Study [J]. Ann Intern Med, 1992, 116(3): 203-210.
[19]
Shim CY, Hong GR, Park S, et al. Impact of central haemodynamics on left ventricular function in individuals with an exaggerated blood pressure response to exercise [J]. J Hypertens, 2015, 33(3): 612-620.
[20]
Bozbas H, Pirat B, Yildirir A, et al. Coronary microvascular function in patients with isolated systolic and combined systolic/diastolic hypertension [J]. J Clin Hypertens (Greenwich), 2012, 14(12): 871-876.
[21]
Erdogan D, Yildirim I, Ciftci O, et al. Effects of normal blood pressure, prehypertension, and hypertension on coronary microvascular function [J]. Circulation, 2007, 115(5): 593-599.
[22]
Ha JW, Juracan EM, Mahoney DW, et al. Hypertensive response to exercise: a potential cause for new wall motion abnormality in the absence of coronary artery disease [J]. J Am Coll Cardiol, 2002, 39(2): 323-327.
[23]
Fletcher GF, Balady G, Froelicher VF, et al. Exercise standards. A statement for healthcare professionals from the American Heart Association. Writing Group [J]. Circulation, 1995, 91(2): 580-615.
[24]
Detrano R, Froelicher VF. Exercise testing: uses and limitations considering recent studies [J]. Prog Cardiovasc Dis, 1988, 31(3): 173-204.
[25]
Jang JY, Sohn IS, Kim JN, et al. Treadmill exercise stress echocardiography in patients with no history of coronary artery disease: a single-center experience in korean population [J]. Korean Circ J, 2011, 41(9): 528-534.
[26]
Vrints CJ. Refined interpretation of exercise ECG testing: Opportunities for a comeback in the era of expanding advanced cardiac imaging technologies? [J]. Eur J Prev Cardiol, 2016, 23(15): 1628-1631.
[27]
Feher A, Sinusas AJ. Quantitative Assessment of Coronary Microvascular Function: Dynamic Single-Photon Emission Computed Tomography, Positron Emission Tomography, Ultrasound, Computed Tomography, and Magnetic Resonance Imaging [J]. Circ Cardiovasc Imaging, 2017, 10(8).
[1] 张婉微, 秦芸芸, 蔡绮哲, 林明明, 田润雨, 金姗, 吕秀章. 心肌收缩早期延长对非ST段抬高型急性冠脉综合征患者冠状动脉严重狭窄的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1016-1022.
[2] 任书堂, 刘晓程, 张亚东, 孙佳英, 陈萍, 周建华, 龙进, 黄云洲. 左心室辅助装置支持下单纯收缩期主动脉瓣反流的超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1023-1028.
[3] 孙佳英, 黄云洲, 任书堂, 王翠华, 陈新华, 于艾嘉, 陈元禄. 无创心肌做功对左束支传导阻滞患者左心室整体及节段心肌收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(08): 836-843.
[4] 钟露, 曹省, 宋宏宁, 陈金玲, 周青. 超声心动图定量评估二尖瓣反流程度的质量控制[J]. 中华医学超声杂志(电子版), 2023, 20(07): 705-711.
[5] 金姗, 丁雪晏, 蔡绮哲, 李一丹, 赵智玲, 郭兮恒, 吕秀章. 左心室压力-应变环对阻塞型睡眠呼吸暂停综合征患者心肌功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 575-580.
[6] 何俊, 马小静, 夏娟, 何亚峰, 谢姝瑞. 原发性非黏液性心脏肿瘤的超声心动图表现及临床特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(04): 411-416.
[7] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[8] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[9] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[10] 赫嵘, 贾哲, 张珂, 李代京, 张萌, 蒋力. 基于PSM分析腹腔镜肝切除联合Hassab术治疗合并门静脉高压症肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 376-383.
[11] 许语阳, 吕云福, 王葆春. 乙肝后肝硬化门静脉高压症脾肿大外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 469-473.
[12] 杨林青, 任松, 纪泛扑, 张健, 蒋安, 张丽, 安鹏, 王林, 李宗芳. 揿针疗法对门静脉高压症脾切除断流术后胃肠功能的调节作用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 322-326.
[13] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[14] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[15] 许秀兰, 朱建建. 血压变异性与伴H型高血压的急性脑梗死患者预后不良的临床关系分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 199-204.
阅读次数
全文


摘要