切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2019, Vol. 16 ›› Issue (10) : 735 -741. doi: 10.3877/cma.j.issn.1672-6448.2019.10.005

所属专题: 文献

心血管超声影像学

平板运动负荷超声心动图结合心肌声学造影对运动中高血压反应患者心肌微循环的评估
王胰1, 郭智宇2, 张红梅1, 张清凤1, 丁戈琦1, 尹立雪1,()   
  1. 1. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 四川省人民医院
    2. 610072 成都,超声心脏电生理学与生物力学四川省重点实验室 通用电气心血管超声临床科研部
  • 收稿日期:2019-05-09 出版日期:2019-10-01
  • 通信作者: 尹立雪

Evaluation of myocardial microcirculation in patients with hypertensive responses after exercise by treadmill exercise stress echocardiography and myocardial contrast echocardiography

Yi Wang1, Zhiyu Guo2, Hongmei Zhang1, Qingfeng Zhang1, Geqi Ding1, Lixue Yin1,()   

  1. 1. Key Laboratory of Ultrasound in Cardiac Electrophysiology and Biomechanics of Sichuan Province, Sichuan Provincial People′s Hospital
    2. Key Laboratory of Ultrasound in Cardiac Electrophysiology and Biomechanics of Sichuan Province, GE Cardiovascular Ultrasound Clinical & Research Department, Chengdu 610072, China
  • Received:2019-05-09 Published:2019-10-01
  • Corresponding author: Lixue Yin
  • About author:
    Corresponding author: Yin Lixue, Email:
引用本文:

王胰, 郭智宇, 张红梅, 张清凤, 丁戈琦, 尹立雪. 平板运动负荷超声心动图结合心肌声学造影对运动中高血压反应患者心肌微循环的评估[J/OL]. 中华医学超声杂志(电子版), 2019, 16(10): 735-741.

Yi Wang, Zhiyu Guo, Hongmei Zhang, Qingfeng Zhang, Geqi Ding, Lixue Yin. Evaluation of myocardial microcirculation in patients with hypertensive responses after exercise by treadmill exercise stress echocardiography and myocardial contrast echocardiography[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2019, 16(10): 735-741.

目的

采用平板运动负荷超声心动图结合心肌声学造影技术评估运动中高血压反应(HRE)对心肌功能的影响。

方法

选取2017年1月至2018年12月于四川省人民医院进行平板运动负荷超声心动图,同时运动过程中出现高血压反应的患者32例(HRE组)及同期进行平板运动负荷超声心动图且结果正常者28例(对照组),运用平板运动负荷超声心动图结合心肌声学造影技术分别于基线状态及运动后即刻采集常规超声心动图及心肌灌注图像,比较不同状态下2组的运动耐量、血压、左心房和左心室大小、心室壁相对厚度、不同阶段左心室收缩功能和舒张功能及心肌灌注参数。

结果

基线状态下,HRE组E/e′高于对照组,差异有统计学意义(t=3.018,P<0.05)。HRE组运动耐量参数低于对照组,差异有统计学意义(t=4.786,P<0.01);HRE组中10例出现ST段水平或下斜型压低≥0.1 mV,对照组中无一例出现ST段改变,2组比较差异有统计学意义(χ2=24.97,P<0.01);对照组中仅1例于运动期间出现偶发房性早搏,而HRE组中5例于运动期间出现房性或室性早搏,2组比较差异有统计学意义(χ2=21.45,P<0.05);HRE组峰值期收缩压高于对照组,2组比较差异有统计学意义(t=2.131,P<0.05);HRE组中6例出现广泛性心室壁运动幅度降低,对照组均未出现节段性心室壁运动异常,2组比较差异有统计学意义(χ2=18.58,P<0.05);HRE组运动后e′、运动后E/e′高于对照组,2组比较差异均有统计学意义(t=2.472、3.018,P均<0.05)。基线状态下,HRE组与对照组的心内膜下心肌及心外膜下心肌的心肌血流速度、造影峰值强度和心肌血流量(MBF)比较,差异均无统计学意义(P均>0.05)。运动后即刻观察,HRE组心内膜下心肌广泛出现造影剂稀疏改变,其心肌血流速度、造影峰值强度、MBF均低于对照组,差异均有统计学意义(t=3.692、2.582、4.673,P均<0.05);心外膜下心肌灌注参数造影峰值强度2组间差异无统计学意义(P>0.05),但HRE组的心肌血流速度、MBF值低于对照组,2组比较差异均有统计学意义(t=3.147、2.375,P均<0.05)。将HRE组中出现广泛性心室壁运动幅度降低的6例与其余26例的灌注参数进行对比发现,运动幅度降低组与未降低组之间比较,运动后即刻运动幅度降低组心内膜下心肌的心肌血流速度、造影峰值强度、MBF均低于未降低组,差异均有统计学意义(t=3.487、2.453、4.298,P均<0.05)。

结论

HRE患者左心室舒张功能明显降低,心肌灌注特别是心内膜下心肌微循环明显受损。平板运动负荷超声心动图作为一项简单、无创评估心脏功能的方法,结合心肌声学造影技术可在常规超声心动图正常情况下早期发现HRE患者心肌微循环功能异常,对HRE人群心脏功能异常的早期诊断及远期随访有重要的临床应用价值。

Objective

To evaluate the effect of hypertensive responses (HRE) on myocardial function by treadmill exercise stress echocardiography (ESE) and myocardial contrast echocardiography (MCE).

Methods

Thirty-two patients with HRE were enrolled as an HRE group and 28 adults with negative stress echocardiography results were included as a control group from January 2017 to December 2018 at Sichuan Provincial People′s Hospital. Treadmill ESE combined with MCE were used to acquire the 2D and myocardial perfusion images at baseline and after exercises. The exercise capacity, blood pressure (BP), left atria (LA) and left ventricle (LV) volume, relative wall thickness (RWT), LV systolic function, LV diastolic function, and myocardial perfusion parameters during different stages were compared between the two groups.

Results

At baseline, the E/e' in the HRE group was significantly higher than that in the control group (t=3.018, P<0.05). The exercise tolerance parameter (METs) in the HRE group was significantly lower than that in the control group (t=4.786, P<0.01). In the HRE group, ST-segment depression≥ 0.1 mV with level/down-slope type appeared in 10 cases, and none of the control group showed ST-segment changes (χ2=24.97, P<0.01). One subject had atrial premature heartbeat in the control group, while there were five cases of atrial/ventricular premature heartbeat in the HRE groups; there was a statistically significant difference between the two groups (χ2=21.45, P<0.05). The peak SBP in the HRE group was significantly higher than that in the control group (t=2.131, P<0.05). Wall motion abnormalities were observed in six cases in the HRE group, while there was no wall motion abnormalities in the control group (χ2=18.58, P<0.05). e′ and E/e′ after exercise were significantly higher in cases than in controls (t=2.472 and 3.018, respectively, P<0.05). At baseline, there was no significant difference in myocardial blood flow velocity (k), peak intensity (A), or myocardial blood flow (MBF) between the two groups (P>0.05). Immediately after exercise, the k, A, and MBF of the subendocardial myocardium in the HRE group were significantly lower than those of the control group (t=3.692, 2.582, and 4.673, respectively, P<0.05). There was no significant difference in the subepicardial myocardium perfusion parameter A between the two groups (P>0.05). The k and MBF values in the subepicardial myocardium in the HRE group were significantly lower those of the control group (t=3.147 and 2.375, respectively, P<0.05). We also compared the perfusion parameters between the six subjects with low wall motion and the other 26 subjects with normal wall motion in the HRE group. We found that k, A, and MBF of the subendocardial myocardium after exercise were significantly lower in the low wall motion group (t=3.487, 2.453, and 4.298, respectively, P<0.05).

Conclusion

LV diastolic function is significantly reduced in patients with HRE, and myocardial perfusion, especially subendocardial myocardial microcirculation, is significantly impaired. Treadmill ESE is a simple, non-invasive method for assessing cardiac function, and it can be used to early detect myocardial microcirculation dysfunction in HRE patients with normal rest conventional echocardiography images if combined with MCE. These two combined techniques might have important value in early diagnosis and long-term follow-up of cardiac dysfunction in HRE patients.

表1 HRE组与对照组一般临床资料比较(±s
表2 HRE组与对照组基线状态下常规超声心动图参数比较(±s
表3 HRE组与对照组平板运动负荷超声心动图参数比较(±s
表4 HRE组与对照组心肌声学造影参数比较(±s
图1 运动中高血压反应患者及正常健康者的心肌声学造影灌注图像。图a为运动中高血压反应患者运动后即刻行心肌声学造影检查,心内膜下心肌广泛出现灌注稀疏改变;图b为正常健康者运动后即刻行心肌声学造影检查,心内膜下心肌与心外膜下心肌造影峰值强度无明显差异(图中黄色圆圈和曲线所示为心外膜下取样容积及心肌灌注曲线,绿色圆圈和曲线所示为心内膜下取样容积及心肌灌注曲线);图c为运动中高血压反应患者运动后即刻行心肌声学造影检查,心内膜下心肌造影峰值强度、心肌血流速度均低于心外膜下心肌(图中黄色圆圈和曲线为心外膜下取样容积及心肌灌注曲线,绿色圆圈和曲线为心内膜下取样容积及心肌灌注曲线)
[1]
Itoh H, Ajisaka R, Koike A, et al. Heart rate and blood pressure response to ramp exercise and exercise capacity in relation to age, gender, and mode of exercise in a healthy population [J]. J Cardiol, 2013, 61(1): 71-78.
[2]
Mancia G, Faggard R, Narkiewicz K, et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension [J]. J Hypertens, 2013, 31(10): 1925-1938.
[3]
Schultz MG, La Gerche A, and Sharman JE. Blood Pressure Response to Exercise and Cardiovascular Disease [J]. Curr Hypertens Rep, 2017, 19(11): 89.
[4]
Sun L, Wang Z, Xu T, et al. The value of real-time myocardial contrast echocardiography for detecting coronary microcirculation function in coronary artery disease patients [J]. Anatol J Cardiol, 2018, 19(1): 27-33.
[5]
Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: Consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association [J]. Circulation, 2005, 111(5): 682-696.
[6]
Tzemos N, Lim PO, Mackenzie IS, et al. Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease [J]. J Clin Hypertens (Greenwich), 2015, 17(11): 837-844.
[7]
Stewart KJ, Sung J, Silber HA, et al. Exaggerated exercise blood pressure is related to impaired endothelial vasodilator function [J]. Am J Hypertens, 2004, 17(4): 314-320.
[8]
Thanassoulis G, Lyass A, Benjamin EJ, et al. Relations of exercise blood pressure response to cardiovascular risk factors and vascular function in the Framingham Heart Study [J]. Circulation, 2012, 125(23): 2836-2843.
[9]
Schultz MG, Otahal P, Cleland VJ, et al. Exercise-induced hypertension, cardiovascular events, and mortality in patients undergoing exercise stress testing: a systematic review and meta-analysis [J]. Am J Hypertens, 2013, 26(3): 357-366.
[10]
Manolio TA, Burke GL, Savage PJ, et al. Exercise blood pressure response and 5-year risk of elevated blood pressure in a cohort of young adults: the CARDIA study [J]. Am J Hypertens, 1994, 7(3): 234-241.
[11]
Youn JC, Kang SM. Cardiopulmonary Exercise Test in Patients with Hypertension: Focused on Hypertensive Response to Exercise [J]. Pulse (Basel), 2015, 3(2): 114-117.
[12]
Fagard RH, Pardaens K, Staessen JA, et al. Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men [J]. Hypertension, 1996, 28(1): 31-36.
[13]
Vigil Medina L, Garcia Carretero R. Hypertensive response to exercise: Does it has prognostic implications? [J]. Rev Clin Esp, 2019. [Epub ahead of print].
[14]
Takamura T, Onishi K, Sugimoto T, et al. Patients with a hypertensive response to exercise have impaired left ventricular diastolic function [J]. Hypertens Res, 2008, 31(2): 257-263.
[15]
Kim D, Ha JW. Hypertensive response to exercise: mechanisms and clinical implication [J]. Clin Hypertens, 2016, 22: 17.
[16]
Shim CY, Ha JW, Park S, et al. Exaggerated blood pressure response to exercise is associated with augmented rise of angiotensin II during exercise [J]. J Am Coll Cardiol, 2008, 52(4): 287-292.
[17]
Mottram PM, Haluska B, Yuda S, et al. Patients with a hypertensive response to exercise have impaired systolic function without diastolic dysfunction or left ventricular hypertrophy [J]. J Am Coll Cardiol, 2004, 43(5): 848-853.
[18]
Lauer MS, Levy D, Anderson KM, et al. Is there a relationship between exercise systolic blood pressure response and left ventricular mass? The Framingham Heart Study [J]. Ann Intern Med, 1992, 116(3): 203-210.
[19]
Shim CY, Hong GR, Park S, et al. Impact of central haemodynamics on left ventricular function in individuals with an exaggerated blood pressure response to exercise [J]. J Hypertens, 2015, 33(3): 612-620.
[20]
Bozbas H, Pirat B, Yildirir A, et al. Coronary microvascular function in patients with isolated systolic and combined systolic/diastolic hypertension [J]. J Clin Hypertens (Greenwich), 2012, 14(12): 871-876.
[21]
Erdogan D, Yildirim I, Ciftci O, et al. Effects of normal blood pressure, prehypertension, and hypertension on coronary microvascular function [J]. Circulation, 2007, 115(5): 593-599.
[22]
Ha JW, Juracan EM, Mahoney DW, et al. Hypertensive response to exercise: a potential cause for new wall motion abnormality in the absence of coronary artery disease [J]. J Am Coll Cardiol, 2002, 39(2): 323-327.
[23]
Fletcher GF, Balady G, Froelicher VF, et al. Exercise standards. A statement for healthcare professionals from the American Heart Association. Writing Group [J]. Circulation, 1995, 91(2): 580-615.
[24]
Detrano R, Froelicher VF. Exercise testing: uses and limitations considering recent studies [J]. Prog Cardiovasc Dis, 1988, 31(3): 173-204.
[25]
Jang JY, Sohn IS, Kim JN, et al. Treadmill exercise stress echocardiography in patients with no history of coronary artery disease: a single-center experience in korean population [J]. Korean Circ J, 2011, 41(9): 528-534.
[26]
Vrints CJ. Refined interpretation of exercise ECG testing: Opportunities for a comeback in the era of expanding advanced cardiac imaging technologies? [J]. Eur J Prev Cardiol, 2016, 23(15): 1628-1631.
[27]
Feher A, Sinusas AJ. Quantitative Assessment of Coronary Microvascular Function: Dynamic Single-Photon Emission Computed Tomography, Positron Emission Tomography, Ultrasound, Computed Tomography, and Magnetic Resonance Imaging [J]. Circ Cardiovasc Imaging, 2017, 10(8).
[1] 杜祖升, 赵博文, 张帧, 潘美, 彭晓慧, 陈冉, 毛彦恺. 应用二维斑点追踪成像技术评估孕周及心尖方向对中晚孕期正常胎儿左心房应变的影响[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 843-851.
[2] 张商迪, 赵博文, 潘美, 彭晓慧, 陈冉, 毛彦恺, 陈阳, 袁华, 陈燕. 中晚孕期胎儿心房内径定量评估心房比例失调胎儿心脏畸形的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 785-793.
[3] 王水清, 赵博文, 潘美, 彭晓慧, 陈冉, 马明明, 狄敏. 16~40周正常胎儿左心房后间隙指数及其Z评分的定量研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 460-469.
[4] 马琳, 彭驰涵, 朱晓霞, 范红霞, 杨家丽, 罗燕. 超声造影定量评估大鼠70%肝切除后不同类型门静脉狭窄残肝微循环灌注的实验研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(01): 83-89.
[5] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[6] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[7] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[8] 杨竞, 周光文. 肝硬化门静脉高压症治疗后再出血危险因素分析及预测模型构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 296-301.
[9] 刘起帆, 蒋安. 肝硬化门静脉高压症门静脉压力无创测量进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 270-275.
[10] 刘国龙, 王鹏, 谭超, 杨辉, 彭菊红. 神经外科机器人辅助双通道颅内血肿清除术治疗高血压性脑出血[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 254-256.
[11] 景方坤, 周建波, 王全才, 黄海韬, 李岩峰, 徐杨熙. 神经导航引导下治疗基底节高血压脑出血的短期疗效预测[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 154-159.
[12] 庞宁东, 蒋贻洲, 姜华, 牛传强, 李海波, 刘浪, 刘珍银, 张靖. 经皮腔内血管成形术治疗儿童肾动脉狭窄的疗效及相关因素分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(01): 22-26.
[13] 刘鑫, 裴思雨, 李志强, 陈成文, 傅硕, 卢领, 孙楠楠, 程守全, 谢冰, 张诗文, 王诚. 靶向药物联合缺损修复在成人先天性心脏病相关重度肺动脉高压的应用[J/OL]. 中华心脏与心律电子杂志, 2024, 12(02): 86-93.
[14] 王梦欣, 李莫凡, 王淑敏. 脑微循环成像技术在脑小血管病中的应用研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(03): 281-284.
[15] 王永彬, 贾彦迅, 尹轶广. 神经导航结合3D重建技术引导神经内镜血肿清除术对高血压脑出血患者的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(02): 153-156.
阅读次数
全文


摘要