[1] |
马丽媛,吴亚哲,王文, 等. 《中国心血管病报告2017》要点解读 [J]. 中国心血管杂志, 2018, 23(1): 3-6.
|
[2] |
吴红丹,胡益蓉. 心肌钙蛋白、肌酸激酶、总胆固醇及同型半胱氨酸的检测在心血管疾病诊断中的应用价值 [J]. 标记免疫分析与临床, 2019, 26(4): 137-140.
|
[3] |
郭金玉. 急性ST段抬高型心肌梗死(STEMI)心电图表现特征及临床价值 [J]. 当代医学, 2019, 25(12): 179-180.
|
[4] |
Hyvelin JM, Tardy I, Arbogast C, et al. Use of ultrasound contrast agent microbubbles in preclinical research: recommendations for small animal imaging [J]. Invest Radiol, 2013, 48(8): 570-583.
|
[5] |
王志刚. 超声分子影像学研究进展 [J]. 中国医学影像技术, 2009, 25(6): 921-924.
|
[6] |
ST段抬高型急性心肌梗死院前溶栓治疗中国专家共识 [J]. 中国介入心脏病学杂志, 2018, 153(4): 6-15.
|
[7] |
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target [J]. Clin Invest, 2013, 123(1): 92-100.
|
[8] |
Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: moving toward clinical translation [J]. Eur J Radiol, 2015, 84(9): 1685-1693.
|
[9] |
Yan F, Sun Y, Mao Y, et al. Ultrasound molecular imaging of atherosclerosis for early diagnosis and therapeutic evaluation through leucocyte-like multiple targeted microbubbles [J]. Theranostics, 2018, 8(7): 1879-1891.
|
[10] |
Zhang L, Sun Z, Ren P, et al. Localized delivery of shRNA against PHD2 acute myocardial infarction through ultrasond-targeted cationic microbubble destruction [J]. Theranostics, 2017, 7(1): 51-66.
|
[11] |
Groh L, Keating ST, Joosten LAB, et al. Monocyte and macrophage immunometabolism in atherosclerosis [J]. Semin Immunopathol, 2018, 40(2): 203-214.
|
[12] |
Osborn EA, Jaffer FA. Imaging inflammation and neovascularization in atherosclerosis: clinical and translational molecular and structural imaging targets [J]. Curr Opin Cardiol, 2015, 30(6): 671-680.
|
[13] |
Moccetti F, Weinkauf CC, Davidson BP, et al. Ultrasound molecular imaging of atherosclerosis using small-peptide targeting ligands against endothelial markers of inflammation and oxidative stress [J]. Ultrasound Med Biol, 2018, 44(6): 1155-1163.
|
[14] |
Atkinson T, Packwood W, Xie A, et al. Assessment of novel antioxidant therapy in atherosclerosis by contrast ultrasound molecular imaging [J]. J Am Soc Echocardiogr, 2018, 31(11): 1252-1259.
|
[15] |
叶玉泉,薛红元,高丽,等. 颈动脉斑块内新生血管的超微血管显像:与超声造影对比 [J]. 中国医学影像技术,2015,31(5):651-654.
|
[16] |
Chen H, Chen L, Liang R, et al. Ultrasound and magnetic resonance molecular imaging of atherosclerotic neovasculature with perfluorocarbon magnetic nanocapsules targeted against vascular endothelial growth factor receptor 2 in rats [J]. Mol Med Rep, 2017, 16(5): 5986-5996.
|
[17] |
Perrot-Applanat M, Di Benedetto M. Autocrine functions of VEGF in breast tumor cells: adhesion, survival, migration and invasion [J]. Cell Adh Migr, 2012, 6(6): 547-553.
|
[18] |
Xie M, Cheng TO, Fei H, et al. The diagnostic value of transthoracic echocardiography for eosinophilic myocarditis: a singlecenter experience from China [J]. Int J Cardiol, 2015, 201: 353-357.
|
[19] |
Steinl DC, Xu L, Khanicheh E, et al. Noninvasive contrast enhanced ultrasound molecular imaging detects myocardial inflammatory response in autoimmune myocarditis [J]. Circ Cardiovasc Imaging, 2016, 9(8).
|
[20] |
Konishi M, Erdem SS, Weissleder R, et al. Imaging granzyme B activity assesses immune-mediated myocarditis [J]. Circ Res, 2015, 117(6): 502-512.
|
[21] |
Martinez MD, Trac DQ, Brown ME, et al. Identification of targeting peptides for the diagnosis of myocarditis [J]. Nanomedicine(Lond), 2018, 13(7): 787-801.
|
[22] |
Wang T, Yuan C, Dai B, et al. Click-chemistry-mediated rapid microbubble capture for acute thrombus ultrasound molecular imaging [J]. Chembiochem, 2017, 18(14): 1364-1368.
|
[23] |
Günther F, Heidt T, Kramer M, et al. Dual targeting improves capture of ultrasound microbubbles towards activated platelets but yields no additional benefit for imaging of arterial thrombosis [J]. Sci Rep, 2017, 7(1): 14898.
|
[24] |
Wang X, Hagemeyer CE, Hohmann JD, et al. Novel single-chain antibody-targeted microbubbles for molecular ultrasound imaging of thrombosis: validation of a unique noninvasive method for rapid and sensitive detection of thrombi and monitoring of success or failure of thrombolysis in mice [J]. Circulation, 2012, 125(25): 3117-3126.
|
[25] |
Wang X, Gkanatsas Y, Palasubramaniam J, et al. Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis [J]. Theranostics, 2016, 6(5): 726-738.
|
[26] |
Tang R, Chai WM, Yan F, et al. Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice [J]. Eur Radiol, 2016, 26(9): 3253-3261.
|
[27] |
Chen Y, Zhang L, Liu J, et al. Molecular imaging of acute cardiac transplant rejection: animal experiments and prospects [J]. Transplantation, 2017, 101(9): 1977-1986.
|
[28] |
Weller GE, Lu E, Csikari MM. Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1 [J]. Circulation, 2003, 108(2): 218-224.
|
[29] |
Wu W, Zhang Z, Zhuo L, et al. Ultrasound molecular imaging of acute cellular cardiac allograft rejection in rat with T-cell-specific nanobubbles [J]. Transplantation, 2013, 96 (6): 543-549.
|
[30] |
Liu J, Chen Y, Wang G, et al. Ultrasound molecular imaging of acute cardiac transplantation rejection using nanobubbles targeted to T lymphocytes [J]. Biomaterials, 2018, 162: 200-207.
|
[31] |
段磊,张宇璠,顾宁. 基于微气泡的超声分子影像探针及其研究进展 [J]. 南京医科大学学报(自然科学版), 2017, 37(2): 129-138.
|
[32] |
Curaj A, Wu Z, Rix A, et al. Molecular ultrasound imaging of junctional adhesion molecule a depicts acute alterations in blood flow and early endothelial dysregulation [J]. Arterioscler Thromb Vasc Biol, 2018, 38(1): 40-48.
|
[33] |
Wu W, Feng X, Yuan Y, et al. Comparison of magnetic microbubbles and dual modified microbubbles targeted to P-selectin for imaging of acute endothelial inflammation in the abdominal aorta [J]. Mol Imaging Biol, 2017, 19(2): 183-193.
|