切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2020, Vol. 17 ›› Issue (06) : 566 -573. doi: 10.3877/cma.j.issn.1672-6448.2020.06.015

所属专题: 乳腺超声 文献

基础研究

赫赛汀靶向载阿霉素/印度墨水多功能分子探针的制备及其对乳腺癌成像诊断及治疗的实验研究
罗水莲1, 吴猛1, 白姣1, 王莹2,()   
  1. 1. 430071 武汉大学中南医院超声影像科
    2. 武汉大学第二临床学院
  • 收稿日期:2019-08-15 出版日期:2020-06-01
  • 通信作者: 王莹
  • 基金资助:
    武汉大学中南医院面上培育基金(znpy2018021)

Preparation of Herceptin targeted doxorubicin/Indian ink conjugated multifunctional molecular probe: application in imaging diagnosis and treatment of breast cancer

Shuilian Luo1, Meng Wu1, Jiao Bai1, Ying Wang2,()   

  1. 1. Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
    2. The Second Clinical Teaching Office, Wuhan University, Wuhan, 430071, China
  • Received:2019-08-15 Published:2020-06-01
  • Corresponding author: Ying Wang
  • About author:
    Corresponding author: Wang Ying, Email:
引用本文:

罗水莲, 吴猛, 白姣, 王莹. 赫赛汀靶向载阿霉素/印度墨水多功能分子探针的制备及其对乳腺癌成像诊断及治疗的实验研究[J]. 中华医学超声杂志(电子版), 2020, 17(06): 566-573.

Shuilian Luo, Meng Wu, Jiao Bai, Ying Wang. Preparation of Herceptin targeted doxorubicin/Indian ink conjugated multifunctional molecular probe: application in imaging diagnosis and treatment of breast cancer[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2020, 17(06): 566-573.

目的

制备赫赛汀靶向载阿霉素/印度墨水(DOX-ink-HER-NBs)多功能分子探针,评估其在乳腺癌动物模型成像诊断及治疗中的应用价值。

方法

通过薄膜水化、碳二亚胺法制备DOX-ink-HER-NBs多功能纳米造影剂,检测其基本物理特性。通过激光共聚焦显像及流式细胞术检测靶向纳米分子探针体外靶向乳腺癌细胞能力。选取6周龄雌性BALB/c裸鼠构建乳腺癌移植瘤模型。将18只移植瘤裸鼠随机分为靶向组(DOX-ink-HER-NBs)、非靶向组(DOX-ink-NBs)和对照组(PBS),每组6只,通过尾静脉分别注射200 μl DOX-ink-HER-NBs混悬液、DOX-ink-NBs混悬液、PBS,应用超声诊断仪及光声成像系统观察分子探针在裸鼠体内超声、光声双模态显像情况。通过激光共聚焦对组织冰冻切片的显像,观察分子探针在肿瘤组织内的分布。对18只移植瘤裸鼠尾静脉注射200 μl DOX-ink-HER-NBs、DOX-ink-NBs、PBS,配合超声辐照,每3天注射治疗一次,持续治疗7次,观测分子探针抑制移植瘤生长的效果。

结果

DOX-ink-HER-NBs分子探针粒径约(621.23±42.56)nm,电位约(-25.34±2.56)mV。流式细胞结果显示靶向组的体外寻靶率较非靶向组、对照组高[(71.64±9.32)% vs (16.99±4.84)%、(9.29±3.15)%],差异均有统计学意义(P均<0.0001)。裸鼠移植瘤体内实验结果表明,与非靶向组和对照组相比,靶向分子探针能够大量聚集在肿瘤组织细胞周围。靶向组移植瘤部位的超声造影信号强度显著强于非靶向组及对照组[(60.33±4.51)dB vs (15.67±4.04)dB、(7.00±2.00)dB],差异均有统计学意义(P均<0.0001)。与非靶向组及对照组比较,靶向组移植瘤的光声信号显像明显[(0.8567±0.0950)a.u. vs(0.3233±0.0950)a.u.、(0.1033±0.0153)a.u.],差异均有统计学意义(P=0.0002、<0.0001)。与非靶向组和对照组相比,靶向组肿瘤抑制率最高[(62.93±6.96)% vs(22.73±8.05)%、(18.33±15.88)%],差异均有统计学意义(P=0.0043、0.0026)。

结论

本研究成功制备了DOX-ink-HER-NBs多功能分子探针。在赫塞汀的介导下纳米分子探针可聚集于靶组织,实现乳腺癌的超声及光声双模式分子成像,同时协同发挥抗肿瘤效应,为乳腺癌的分子诊断和可视化靶向治疗及疗效评估提供了新的思路。

Objective

To prepare a Herceptin targeted doxorubicin/Indian ink conjugated nano-bubbles (DOX-ink-HER-NBs) as a multifunctional nano-probe, and evaluate its application value in the imaging diagnosis and treatment of breast cancer in an animal model.

Methods

DOX-ink-HER-NBs were prepared by film hydration and carbodiimide method, and the basic physical properties of the nano-bubbles were detected. Laser confocal imaging and flow cytometry were used to detect the ability of the nano-probe to target breast cancer cells in vitro. Six-week-old female BALB/c nude mice were randomly divided into three groups (n=6 each): targeted group (DOX-ink-HER-NBs), non-targeted group (DOX-ink-NBs), and control group (PBS). Two hundred microliters of DOX-ink-HER-NBs suspension, DOX-ink-NBS suspension, and PBS were injected through the tail vein, respectively. Ultrasound and photoacoustic imaging system were used to observe the ultrasound and photoacoustic dual-mode imaging of molecular probes in nude mice. The distribution of molecular probes in tumor tissue was observed by laser confocal imaging. Eighteen nude mice with transplanted tumor were injected with DOX-ink-HER-NBs, DOX-ink-NBs, and PBS via the tail vein and underwent ultrasound irradiation, every 3 days for 7 times. The effect of the molecular probe in inhibiting the growth of transplanted tumor was observed.

Results

The particle size of DOX-ink-HER-NBs was about (621.23±42.56) nm, and the potential was about (-25.34±2.56) mV. Flow cytometry showed that the targeted group had a stronger ability to target breast cancer cells than the non-targeted group and the control group [(71.64±9.32)% vs (16.99±4.84)% and (9.29±3.15)%, P<0.0001]. In vivo results showed that compared with the non-targeted group and the control group, the targeted molecular probe could gather around the tumor tissue. The signal intensity of contrast-enhanced ultrasound in the targeted group was significantly higher than that in the non-targeted group and the control group [(60.33±4.51) dB vs (15.67±4.04) dB and (7.00±2.00) dB, P<0.0001]. Compared with the non-targeted group and the control group, the photoacoustic signal imaging of the targeted group was more significant [(0.8567±0.0950) a.u. vs (0.3233±0.0950) a.u. and (0.1033±0.0153) a.u.; P=0.0002 and P<0.0001, respectively]. Compared with the non-targeted group and the control group, the tumor inhibition rate of the targeted group was the highest [(62.93±6.96)% vs (22.73±8.05)% and (18.33±15.88)%; P=0.0043 and 0.0026, respectively].

Conclusion

We have successfully prepared DOX-ink-HER-NBs. Under the guidance of Herceptin, the nano-molecular probes can gather in the target tissue, thus realizing ultrasound and photoacoustic dual-mode molecular imaging of breast cancer. At the same time, the probe synergistically has an anti-tumor effect, which provides a new idea for molecular diagnosis, targeted treatment, and efficacy evaluation of breast cancer.

图1 赫赛汀靶向载阿霉素/印度墨水分子探针(DOX-ink-HER-NBs)的物理特性。图a为DOX-ink-HER-NBs粒径图;图b为DOX-ink-HER-NBs电位图
图2 激光共聚焦显微镜下不同分子探针在体外乳腺癌细胞中的靶向分布。图a~c分别为靶向分子探针组同一视野下蓝色荧光标记的乳腺癌细胞核分布图、红色荧光标记的靶向分子探针分布图、乳腺癌细胞核与靶向分子探针分布融合图;图d~f分别为非靶向分子探针组同一视野下蓝色荧光标记的乳腺癌细胞核分布图、红色荧光标记的非靶向分子探针分布图、乳腺癌细胞核与非靶向分子探针分布融合图;图g~i分别为对照组(PBS组)同一视野下蓝色荧光标记的乳腺癌细胞核分布图、红色荧光标记的PBS分子探针分布图、乳腺癌细胞核与PBS分子探针分布融合图
图3 激光共聚焦显微镜下多功能分子探针在裸鼠移植瘤内的分布。图a为PBS在裸鼠移植瘤内的分布;图b为非靶向分子探针在裸鼠移植瘤内的分布;图c为靶向分子探针在裸鼠移植瘤内的分布
图4 多功能分子探针在裸鼠移植瘤体内的超声及光声显像。图a、d分别为PBS在裸鼠移植瘤体内的超声、光声显像;图b、e分别为非靶向分子探针在裸鼠移植瘤体内的超声、光声显像;图c、f分别为靶向分子探针在裸鼠移植瘤体内的超声、光声显像
表1 靶向组、非靶向组与对照组的体内超声造影强度值及光声值比较(±s
表2 靶向组、非靶向组与对照组裸鼠在体肿瘤超声辐照治疗效果比较(±s
图5 裸鼠移植瘤超声辐照治疗第21天的肿瘤体积。图a为PBS组裸鼠治疗后移植瘤体积;图b为非靶向分子探针组裸鼠治疗后移植瘤体积;图c为靶向分子探针组裸鼠治疗后移植瘤体积
图6 3组乳腺癌裸鼠皮下移植瘤肿瘤体积生长曲线
1
Yu B, Tai HC, Xue W, et al. Receptor-targeted nanocarriers for therapeutic delivery to cancer [J]. Mol Membr Biol, 2010, 27(7): 286-298.
2
Fan CH, Ting CY, Liu HL, et al. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment [J]. Biomaterials, 2013, 34(8): 2142-2155.
3
Weissleder R. Molecular imaging: exploring the next frontier [J]. Radiology, 1999, 212(3): 609-614.
4
Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments [J]. Mol Immunol, 2015, 67(2): 142-152.
5
Sun B, Feng SS. Trastuzumab-functionalized nanoparticles of biodegradable copolymers for argeted delivery of docetaxel [J]. Nanomedicine, 2009, 4(4): 431-445.
6
Park K, Hong HY, Moon HJ, et al. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides [J]. J Control Release, 2008, 128(3): 217-223.
7
Zhao H, Wu M, Zhu L, et al. Cell-penetrating Peptide-modified Targeted Drug-loaded Phase-transformation Lipid Nanoparticles Combined with Low-intensity Focused Ultrasound for Precision Theranostics against Hepatocellular Carcinoma [J]. Theranostics, 2018, 8(7): 1892-1910.
8
Liu JX, Shang TT, Wang FJ, et al. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging [J]. Int J Nanomedicine, 2017, 12: 911-923.
9
Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine [J]. N Engl J Med, 2012, 366(6): 489-491.
10
Wu M, Zhao H, Guo L, et al. Ultrasound-mediated nanobubble destruction (UMND) facilitates the delivery of A10-3.2 aptamer targeted and siRNA-loaded cationic nanobubbles for therapy of prostate cancer [J]. Drug Deliv, 2018, 25(1): 226-240.
11
Yang H, Cai W, Xu L, et al. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor [J]. Biomaterials, 2015, 37: 279-288.
12
Yin T, Wang P, Zheng R, et al. Nanobubbles for enhanced ultrasound imaging of tumors [J]. Int J Nanomedicine, 2012, 7: 895-904.
13
Fan XZ, Wang LF, Guo YL, et al. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenagraft [J]. Nanotechnology, 2013, 24(32): 325102.
14
Wang LV, Hu S. Photoacustic tomography: In vivo imaging from organelles to organs [J]. Science, 2012, 335(6075): 1458-1462.
15
Hu S, Wang LV. Photoacustic imaging and characterzation of the microvasculature [J]. J Biomed Opt, 2010, 15(1): 011101.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[3] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[4] 衣晓丽, 胡沙沙, 张彦. HER-2低表达对乳腺癌新辅助治疗疗效及预后的影响[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 340-346.
[5] 施杰, 李云涛, 高海燕. 腋窝淋巴结阳性Luminal A型乳腺癌患者新辅助与辅助化疗的预后及影响因素分析[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 353-361.
[6] 伍秋苑, 陈佩贤, 邓裕华, 何添成, 周丹. 肠道微生物在乳腺癌中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 362-365.
[7] 谭巧, 苏小涵, 侯令密, 黎君彦, 邓世山. 乳腺髓样癌的诊治进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 366-368.
[8] 周婉丽, 钱铮, 李喆. 槐耳在乳腺癌免疫治疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 369-371.
[9] 熊倩, 罗凤. 乳腺癌患者术后康复现状与对策的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 372-374.
[10] 杨小菁, 姜瑞瑞, 石玉香, 王静静, 李长天. 乳腺孤立性纤维性肿瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 375-377.
[11] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[12] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[13] 王雪菲, 海琳悦, 李立方, 肖春花. Luminal A型乳腺癌的内分泌治疗与化疗[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 294-300.
[14] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[15] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
阅读次数
全文


摘要