切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2020, Vol. 17 ›› Issue (08) : 710 -720. doi: 10.3877/cma.j.issn.1672-6448.2020.08.002

所属专题: 总编推荐 文献

专家论坛

超声联合微/纳米技术在肿瘤诊疗中的应用
孙素会1, 徐梦红1, 张路路1, 梁晓龙,1   
  1. 1. 100191 北京大学第三医院超声诊断科
  • 收稿日期:2020-07-10 出版日期:2020-08-01
  • 通信作者: 梁晓龙
  • 基金资助:
    国家自然科学基金(81822022、81771846、81571810); 国家重点研发计划纳米专项(2016YFA0201400); 北京市人才项目(2018000021223ZK48); 北京大学第三医院科研项目(BYSYZD2019018、jyzc2018-02、BYSY2015023)

Application of ultrasound combined with micro/nano-technology in tumor diagnosis and treatment

Sun Sun1, Xu Xu1, Zhang Zhang1, Liang Liang,1   

  • Received:2020-07-10 Published:2020-08-01
  • Corresponding author: Liang Liang
引用本文:

孙素会, 徐梦红, 张路路, 梁晓龙. 超声联合微/纳米技术在肿瘤诊疗中的应用[J]. 中华医学超声杂志(电子版), 2020, 17(08): 710-720.

Sun Sun, Xu Xu, Zhang Zhang, Liang Liang. Application of ultrasound combined with micro/nano-technology in tumor diagnosis and treatment[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2020, 17(08): 710-720.

图1 不同频率的超声及其应用范围
图2 稳定空化和惯性空化示意图
图3 超声联合微纳米材料增效肿瘤诊疗示意图
图4 基因或药物分子与微泡的结合方式示意图
图5 微/纳米材料增强HIFU消融的3种方案
1
Mitragotri S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications[J]. Nat Rev Drug Discov, 2005, 4(3): 255-260.
2
Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment[J]. Drug Des Devel Ther, 2013, 7: 375-388.
3
Gourevich D, Volovick A, Dogadkin O, et al. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery[J]. Ultrasound Med Biol, 2015, 41(7): 1853-1864.
4
Sun S, Xu Y, Fu P, et al. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1alpha-siRNA[J]. Nanoscale, 2018, 10(42): 19945-19956.
5
De Leon A, Perera R, Nittayacharn P, et al. Ultrasound Contrast Agents and Delivery Systems in Cancer Detection and Therapy[J]. Adv Cancer Res, 2018, 139: 57-84.
6
Guo C, Jin Y, Dai Z. Multifunctional ultrasound contrast agents for imaging guided photothermal therapy[J]. Bioconjug Chem, 2014, 25(5): 840-854.
7
Liang X, Gao C, Cui L, et al. Self-Assembly of an Amphiphilic Janus Camptothecin-Floxuridine Conjugate into Liposome-Like Nanocapsules for More Efficacious Combination Chemotherapy in Cancer[J]. Adv Mater, 2017, 29(40). DOI: 10.1002/adma.201703135.
8
Liang X, Xu Y, Gao C, et al. Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy[J]. NPG Asia Materials, 2018, 10(8): 761-774.
9
Jung SE, Jin HJ, Park MY, et al. Complications of High Intensity Focused Ultrasound in Patients with Hepatic and Pancreatic Cancer [C]. Radiological Society of North America 2009 Scientific Assembly and Annual Meeting, 2009.
10
Jung SE, Cho SH, Jin HJ, et al. High-intensity focused ultrasound ablation in hepatic and pancreatic cancer: complications[J]. Abdom Imaging, 2011, 36(2): 185-195.
11
Cheng C, Xiao Z, Huang G, et al. Enhancing ablation effects of a microbubble contrast agent on high-intensity focused ultrasound: an experimental and clinical study[J]. BJOG, 2017, 124 Suppl 3: 78-86.
12
Yu C, Chen H, Shi J. Nanobiotechnology Promotes Noninvasive High-Intensity Focused Ultrasound Cancer Surgery[J]. Adv Healthc Mater, 2015, 4(1): 158-165.
13
Jiang N, Xie B, Zhang X. Enhancing Ablation Effects of a Microbubble-Enhancing Contrast Agent ("SonoVue") in the Treatment of Uterine Fibroids With High-Intensity Focused Ultrasound: A Randomized Controlled Trial[J]. Cardiovasc Intervent Radiol, 2014, 37(5): 1321-1328.
14
Peng S, Xiong Y, Li K, et al. Clinical utility of a microbubble-enhancing contrast ("SonoVue") in treatment of uterine fibroids with high intensity focused ultrasound: A retrospective study[J]. Eur J Radiol, 2012, 81(12): 3832-3838.
15
Suzuki R, Oda Y, Omata D, et al. Tumor growth suppression by the combination of nanobubbles and ultrasound[J]. Cancer Science, 2016, 107(3): 217-223.
16
Wang X, Chen H, Chen Y, et al. Perfluorohexane-Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU)[J]. Adv Mater, 2012, 24(6): 785-791.
17
Teng Z, Wang R, Zhou Y, et al. A magnetic droplet vaporization approach using perfluorohexane-encapsulated magnetic mesoporous particles for ultrasound imaging and tumor ablation[J]. Biomaterials, 2017, 134: 43-50.
18
He K, Ran H, Su Z, et al. Perfluorohexane-encapsulated fullerene nanospheres for dual-modality US/CT imaging and synergistic high-intensity focused ultrasound ablation[J]. Int J Nanomedicine, 2019, 14: 519-529.
19
Yumita N, Nishigaki R, Umemura K, et al. Hematoporphyrin as a Sensitizer of Cell-damaging Effect of Ultrasound[J]. Cancer Science, 1989, 80(3): 219-222.
20
Feng Q, Zhang W, Yang X, et al. pH/Ultrasound Dual-Responsive Gas Generator for Ultrasound Imaging-Guided Therapeutic Inertial Cavitation and Sonodynamic Therapy[J]. Adv Healthc Mater, 2018, 7(5): 1700957.
21
Shimizu N, Ninomiya K, Ogino C, et al. Potential uses of titanium dioxide in conjunction with ultrasound for improved disinfection[J]. Biochem Eng J, 2010, 48(3): 416-423.
22
You DG, Deepagan VG, Um W, et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer[J]. Sci Rep, 2016, 6: 23200.
23
Ozawa K, Emori M, Yamamoto S, et al. Electron-Hole Recombination Time at TiO2 Single-Crystal Surfaces: Influence of Surface Band Bending[J]. J Phys Chem Lett, 2014, 5(11): 1953-1957.
24
Huang P, Qian X, Chen Y, et al. Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy[J]. J Am Chem Soc, 2017, 139(3): 1275-1284.
25
Duan D, Liu H, Xu Y, et al. Activating TiO2 Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy[J]. ACS Appl Mater Interfaces, 2018, 10(6): 5278-5286.
26
Deepagan VG, You DG, Um W, et al. Long-Circulating Au-TiO2 Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer[J]. Nano Lett, 2016, 16(10): 6257-6264.
27
Hou R, Liang X, Li X, et al. In situ conversion of rose bengal microbubbles into nanoparticles for ultrasound imaging guided sonodynamic therapy with enhanced antitumor efficacy[J]. Biomater Sci, 2020, 8(9): 2526-2536.
28
Ran LF, Xie XP, Xia JZ, et al. Specific antitumour immunity of HIFU-activated cytotoxic T lymphocytes after adoptive transfusion in tumour-bearing mice[J]. Int J Hyperthermia, 2016, 32(2): 204-210.
29
Liu F, Hu Z, Qiu L, et al. Boosting high-intensity focused ultrasound-induced anti-tumor immunity using a sparse-scan strategy that can more effectively promote dendritic cell maturation[J]. J Transl Med, 2010, 8: 7.
30
Galluzzi L, Buqué A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease[J]. Nat Rev Immunol, 2017, 17(2): 97-111.
31
Krysko DV, Garg AD, Kaczmarek A, et al. Immunogenic cell death and DAMPs in cancer therapy[J]. Nat Rev Cancer, 2012, 12(12): 860-875.
32
Li X. The inducers of immunogenic cell death for tumor immunotherapy[J]. Tumori, 2018, 104(1): 1-8.
33
Sethuraman SN, Singh MP, Patil G, et al. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity[J]. Theranostics, 2020, 10(8): 3397-3412.
34
Dewitte H, Van Lint S, Heirman C, et al. The potential of antigen and TriMix sonoporation using mRNA-loaded microbubbles for ultrasound-triggered cancer immunotherapy[J]. J Control Release, 2014, 194: 28-36.
35
Heath CH, Sorace A, Knowles J, et al. Microbubble therapy enhances anti-tumor properties of cisplatin and cetuximab in vitro and in vivo[J]. Otolaryngol Head Neck Surg, 2012, 146(6): 938-945.
36
Inui T, Makita K, Miura H, et al. Case Report: A Breast Cancer Patient Treated with GcMAF, Sonodynamic Therapy and Hormone Therapy[J]. Anticancer Res, 2014, 34(8): 4589-4593.
37
Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice[J]. Nat Commun, 2019, 10(1): 2025.
38
Liu M, Khan AR, Ji J, et al. Crosslinked self-assembled nanoparticles for chemo-sonodynamic combination therapy favoring antitumor, antimetastasis management and immune responses[J]. J Control Release, 2018, 290: 150-164.
39
Ranjan A, Jacobs GC, Woods DL, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit VX2 tumor model[J]. J Control Release, 2012, 158(3): 487-494.
40
Liang X, Gao J, Jiang L, et al. Nanohybrid Liposomal Cerasomes with Good Physiological Stability and Rapid Temperature Responsiveness for High Intensity Focused Ultrasound Triggered Local Chemotherapy of Cancer[J]. Acs Nano, 2015, 9(2): 1280-1293.
41
Lyon P, Gray M, Mannaris C. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): a single-centre, open-label, phase 1 trial[J]. Lancet Oncol, 2018, 19(8): 1027-1039.
42
Rizzitelli S, Giustetto P, Cutrin JC. Sonosensitive theranostic liposomes for preclinical in vivo MRI-guided visualization of doxorubicin release stimulated by pulsed low intensity non-focused ultrasound[J]. J Control Release, 2015, 202: 21-30.
43
Wu P, Dong W, Guo X, et al. ROS-Responsive Blended Nanoparticles: Cascade-Amplifying Synergistic Effects of Sonochemotherapy with On-demand Boosted Drug Release During SDT Process[J]. Adv Healthc Mater, 2019, 8(18): e1900720.
44
You Y, Liang X, Yin T, et al. Porphyrin-grafted Lipid Microbubbles for the Enhanced Efficacy of Photodynamic Therapy in Prostate Cancer through Ultrasound-controlled In Situ Accumulation[J]. Theranostics, 2018, 8(6): 1665-1677.
45
Chen M, Liang X, Gao C, et al. Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer[J]. ACS Nano, 2018, 12(7): 7312-7326.
46
Xu Y, Liang X, Bhattarai P, et al. Enhancing Therapeutic Efficacy of Combined Cancer Phototherapy by Ultrasound-Mediated In Situ Conversion of Near-Infrared Cyanine/Porphyrin Microbubbles into Nanoparticles[J]. Adv Funct Mater, 2017, 27(48): 1704096.
47
Zhao R, Liang X, Zhao B, et al. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer[J]. Biomaterials, 2018, 173: 58-70.
No related articles found!
阅读次数
全文


摘要