切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2021, Vol. 18 ›› Issue (05) : 513 -518. doi: 10.3877/cma.j.issn.1672-6448.2021.05.013

所属专题: 超声医学质量控制 文献

综述

面向精准医学的医疗大数据分析:原始超声文本数据质量控制
苟泽辉1, 刘晶焰1, 彭玉兰1,()   
  1. 1. 610041 成都,四川大学华西医院超声医学科
  • 收稿日期:2019-03-26 出版日期:2021-05-01
  • 通信作者: 彭玉兰
  • 基金资助:
    成都市科技局校院地协同创新工程(2017-CY02-00027-GX)

Medical big data analysis oriented to precision medicine: quality control of original ultrasonic text data

Zehui Gou1, Jingyan Liu1, Yulan Peng1()   

  • Received:2019-03-26 Published:2021-05-01
  • Corresponding author: Yulan Peng
引用本文:

苟泽辉, 刘晶焰, 彭玉兰. 面向精准医学的医疗大数据分析:原始超声文本数据质量控制[J]. 中华医学超声杂志(电子版), 2021, 18(05): 513-518.

Zehui Gou, Jingyan Liu, Yulan Peng. Medical big data analysis oriented to precision medicine: quality control of original ultrasonic text data[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(05): 513-518.

1
Katsnelson A. Momentum grows to make 'personalized' medicine more 'precise' [J]. Nat Med, 2013, 19(3): 249.
2
Davidoff F, Miglus J. Delivering clinical evidence where it's needed: building an information system worthy of the profession [J]. JAMA, 2011, 305(18): 1906-1907.
3
Smith R. Strategies for coping with information overload [J]. BMJ, 2010, 341: c7126.
4
Sun W, Rumshisky A, Uzuner O. Temporal reasoning over clinical text: the state of the art [J]. J Am Med Inform Assoc, 2013, 20(5): 814-819.
5
Cai T, Giannopoulos AA, Yu S, et al. Natural language processing technologies in radiology research and clinical applications [J]. Radiographics, 2016, 36(1): 176-191.
6
Jensen K, Soguero-Ruiz C, Oyvind Mikalsen K, et al. Analysis of free text in electronic health records for identification of cancer patient trajectories [J]. Sci Rep, 2017, 7: 46226.
7
Lacson R, Harris K, Brawarsky P, et al. Evaluation of an automated Information extraction tool for imaging data elements to populate a breast cancer screening registry [J]. J Digit Imaging, 2015, 28(5): 567-575.
8
Ni Y, Kennebeck S, Dexheimer JW, et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department [J]. J Am Med Inform Assoc, 2015, 22(1): 166-178.
9
Wang G, Jung K, Winnenburg R, et al. A method for systematic discovery of adverse drug events from clinical notes [J]. J Am Med Inform Assoc, 2015, 22(6): 1196-1204.
10
Khalifa A, Meystre S. Adapting existing natural language processing resources for cardiovascular risk factors identification in clinical notes [J]. J Biomed Inform, 2015, 58 Suppl(Suppl): S128-S132.
11
Blumenthal D. Launching HITECH [J]. N Engl J Med, 2010, 362(5): 382-385.
12
Kruse CS, Goswamy R, Raval Y, et al. Challenges and opportunities of big data in health care: a systematic review [J]. JMIR Med Inform, 2016, 4(4): e38.
13
Andreu-Perez J, Poon CC, Merrifield RD, et al. Big data for health [J]. IEEE J Biomed Health Inform, 2015, 19(4): 1193-1208.
14
Kreimeyer K, Foster M, Pandey A, et al. Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review [J]. J Biomed Inform, 2017, 73: 14-29.
15
Wu PY, Cheng CW, Kaddi CD, et al. Omic and electronic health record big data analytics for precision medicine [J]. IEEE Trans Biomed Eng, 2017, 64(2): 263-273.
16
Sadoughi F, Erfannia L. Health information system in a cloud computing context [J]. Stud Health Technol Inform, 2017, 236: 290-297.
17
Gao F, Thiebes S, Sunyaev A. Rethinking the meaning of cloud computing for health care: a taxonomic perspective and future research directions [J]. J Med Internet Res, 2018, 20(7): e10041.
18
Shi Y, Veidenbaum AV, Nicolau A, et al. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU) [J]. J Neurosci Methods, 2015, 239 :1-10.
19
Baclic O, Tunis M, Young K, et al. Challenges and opportunities for public health made possible by advances in natural language processing [J]. Can Commun Dis Rep, 2020, 46(6): 161-168.
20
Perera N, Dehmer M, Emmert-Streib F. Named entity recognition and relation detection for biomedical information extraction [J]. Front Cell Dev Biol, 2020, 8: 673.
21
Small SG, Medsker L. Review of information extraction technologies and applications [J]. Neural Comput Appl, 2014, 25(3-4): 533-548.
22
Kovacevic A, Dehghan A, Filannino M, et al. Combining rules and machine learning for extraction of temporal expressions and events from clinical narratives [J]. J Am Med Inform Assoc, 2013, 20(5): 859-866.
23
Cai X, Perez-Concha O, Coiera E, et al. Real-time prediction of mortality, readmission, and length of stay using electronic health record data [J]. J Am Med Inform Assoc, 2016, 23(3): 553-561.
24
Herrmann FR, Safran C, Levkoff SE, et al. Serum albumin level on admission as a predictor of death, length of stay, and readmission [J]. Arch Intern Med, 1992, 152(1): 125-130.
25
McManus DD, Saczynski JS, Lessard D, et al. Reliability of predicting early hospital readmission after discharge for an acute coronary syndrome using claims-based data [J]. Am J Cardiol, 2016, 117(4): 501-507.
26
Temple MW, Lehmann CU, Fabbri D. Predicting discharge dates from the NICU using progress note data [J]. Pediatrics, 2015, 136(2): e395-e405.
27
Dai L, Gao X, Guo Y, et al. Bioinformatics clouds for big data manipulation [J]. Biol Direct, 2012, 7: 43.
28
Marx V. Biology: the big challenges of big data [J]. Nature, 2013, 498(7453): 255-260.
29
O'Driscoll A, Daugelaite J, Sleator RD. 'Big data', hadoop and cloud computing in genomics [J]. J Biomed Inform, 2013, 46(5): 774-781.
30
Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential [J]. Health Inf Sci Syst, 2014, 2: 3.
31
Bates DW, Saria S, Ohno-Machado L, et al. Big data in health care: using analytics to identify and manage high-risk and high-cost patients [J]. Health Aff (Millwood) , 2014, 33(7): 1123-1131.
32
Murdoch TB, Detsky AS. The inevitable application of big data to health care [J]. JAMA, 2013, 309(13): 1351-1352.
33
Clark K, Vendt B, Smith K, et al. The cancer imaging archive (TCIA): maintaining and operating a public information repository [J]. J Digit Imaging, 2013, 26(6): 1045-1057.
34
Hsu W, Markey MK, Wang MD. Biomedical imaging informatics in the era of precision medicine: progress, challenges, and opportunities [J]. J Am Med Inform Assoc Nov-Dec, 2013, 20(6): 1010-1013.
35
Banaee H, Ahmed MU, Loutfi A. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges [J]. Sensors (Basel), 2013, 13(12): 17472-17500.
36
Viceconti M, Hunter P, Hose R. Big data, big knowledge: big data for personalized healthcare [J]. IEEE J Biomed Health Inform, 2015, 19(4): 1209-1215.
37
Meystre SM, Lovis C, Bürkle T, et al. Clinical data reuse or secondary use: current status and potential future progress [J]. Yearb Med Inform, 2017, 26(1): 38-52.
38
Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data [J]. Nat Rev Genet, 2010, 11(10): 733-739.
39
Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data [J]. PLoS One, 2012, 7(2): e30619.
40
Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research [J]. J Am Med Inform Assoc, 2013, 20(1): 144-151.
41
Huebner M, Vach W, le Cessie S. A systematic approach to initial data analysis is good research practice [J]. J Thorac Cardiovasc Surg, 2016, 151(1): 25-27.
42
Tran DT, Havard A, Jorm LR. Data cleaning and management protocols for linked perinatal research data: a good practice example from the Smoking MUMS (Maternal Use of Medications and Safety) Study [J]. BMC Med Res Methodol, 2017, 17(1): 97.
43
Luo J, Wu M, Gopukumar D, et al. Big data application in biomedical research and health care: a literature review [J]. Biomed Inform Insights, 2016, 8: 1-10.
44
Shen D, Shen H, Zhu H, et al. The Statistics and mathematics of high dimension low sample size asymptotics [J]. Stat Sin, 2016, 26(4): 1747-1770.
45
Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research [J]. Yearb Med Inform, 2008: 128-144.
46
Dziadkowiec O, Callahan T, Ozkaynak M, et al. Using a data quality framework to clean data extracted from the electronic health record: a case study [J]. EGEMS (Wash DC), 2016, 4(1): 1201.
47
Galster G. Contextualisation of clinical information from fragmented health records [J]. Stud Health Technol Inform, 2013, 194: 41-47.
48
Osborne JW. Is data cleaning and the testing of assumptions relevant in the 21st century? [J]. Front Psychol, 2013, 4: 370.
49
孟小峰, 慈祥. 大数据管理: 概念、技术与挑战 [J]. 计算机研究与发展, 2013, 50(1): 146-169.
50
Hao T, Weng C. Adaptive semantic tag mining from heterogeneous clinical research texts [J]. Methods Inf Med, 2015, 54(2): 164-170.
51
Hassanpour S, Langlotz CP. Information extraction from multi-institutional radiology reports [J]. Artif Intell Med, 2016, 66: 29-39.
52
Li Q, Spooner SA, Kaiser M, et al. An end-to-end hybrid algorithm for automated medication discrepancy detection [J]. BMC Med Inform Decis Mak, 2015, 15: 37.
53
Lin C, Karlson EW, Dligach D, et al. Automatic identification of methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic medical record [J]. J Am Med Inform Assoc, 2015, 22(e1): e151-e161.
54
Pathak J, Bailey KR, Beebe CE, et al. Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium [J]. J Am Med Inform Assoc, 2013, 20(e2): e341-e348.
55
Pathak J, Murphy SP, Willaert BN, et al. Using RxNorm and NDF-RT to classify medication data extracted from electronic health records: experiences from the Rochester Epidemiology Project [J]. AMIA Annu Symp Proc, 2011, 2011: 1089-1098.
56
Savova GK, Olson JE, Murphy SP, et al. Automated discovery of drug treatment patterns for endocrine therapy of breast cancer within an electronic medical record [J]. J Am Med Inform Assoc, 2012, 19(e1): e83-e89.
57
Zheng S, Wang F, Lu JJ. ASLForm: an adaptive self learning medical form generating system [J]. AMIA Annu Symp Proc, 2013, 2013: 1590-1599.
58
Cunningham H, Tablan V, Roberts A, et al. Getting more out of biomedical documents with GATE's full lifecycle open source text analytics [J]. PLoS Comput Biol, 2013, 9(2): e1002854.
59
Chapman WW, Bridewell W, Hanbury P, et al. A simple algorithm for identifying negated findings and diseases in discharge summaries [J]. J Biomed Inform, 2001, 34(5): 301-310.
60
O'Reilly MJA, Hughes CE, Bright DA, et al. Structural and functional changes in an Australian high-level drug trafficking network after exposure to supply changes [J]. Int J Drug Policy, 2020, 84: 102797.
61
Tan SS, Gao G, Koch S. Big data and analytics in healthcare [J]. Methods Inf Med, 2015, 54(6): 546-547.
62
Karystianis G, Sheppard T, Dixon WG, et al. Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database [J]. BMC Med Inform Decis Mak, 2016, 16: 18.
63
Al-Jarrah OY, Yoo PD, Muhaidat S, et al. Efficient machine learning for big data: a review [J]. Big Data Research, 2015, 2(3): 87-93.
No related articles found!
阅读次数
全文


摘要