1 |
吕道文, 张拥军, 赵挺, 等. 超声造影剂微泡次谐波辅助压力估测技术研究进展 [J]. 中国医学物理学杂志, 2016, 33(9): 959-962.
|
2 |
Postema M, Bouakaz A, de Jong N. Noninvasive microbubble-based pressure measurements: a simulation study [J]. Ultrasonics, 2004, 42(1-9): 759-762.
|
3 |
Fairbank WMJr, Scully MO. A new noninvasive technique for cardiac pressure measurement: resonant scattering of ultrasound from bubbles [J]. IEEE Trans Biomed Eng, 1977, 24(2): 107-110.
|
4 |
潘敏, 邓又斌. 超声造影剂成像新技术在无创性估测心腔内压力中的运用 [J]. 中华超声影像学杂志, 2004(2): 55-57.
|
5 |
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要 [J]. 中国循环杂志, 2019, 34(3): 209-220.
|
6 |
Sarazan RD. Cardiovascular pressure measurement in safety assessment studies: technology requirements and potential errors [J]. J Pharmacol Toxicol Methods, 2014, 70(3): 210-223.
|
7 |
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles [J]. JACC Cardiovasc Imaging, 2012, 5(1): 87-92.
|
8 |
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. Subharmonic microbubble emissions for noninvasively tracking right ventricular pressures [J]. Am J Physiol Heart Circ Physiol, 2012, 303(1): H126-H132.
|
9 |
Xu G, Li F, Mao Y. Portal pressure monitoring-state-of-the-art and future perspective [J]. Ann Transl Med, 2019, 7(20): 583.
|
10 |
Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future [J]. Abdom Radiol (NY), 2018, 43(4): 762-772.
|
11 |
Kaminska M, Sobkowicz B, Sawicki R, et al. Is real time contrast echocardiography useful for assessment of the right ventricular morphology, function, and perfusion? [J]. Echocardiography, 2015, 32(7): 1080-1086.
|
12 |
Eskandari M, Monaghan M. Contrast echocardiography in daily clinical practice [J]. Herz, 2017, 42(3): 271-278.
|
13 |
王新房, 谢明星. 超声心动图学 [M]. 5版. 北京: 人民卫生出版社, 2017: 400.
|
14 |
Senior R, Becher H, Monaghan M, et al. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017 [J]. Eur Heart J Cardiovasc Imaging, 2017, 18(11): 1205-1205af.
|
15 |
田锦润, 丁云川, 王庆慧, 等. 左心声学造影的临床应用进展 [J]. 临床超声医学杂志, 2017, 19(12): 838-840.
|
16 |
Negrão de Figueiredo G, Müller-Peltzer K, Schwarze V, et al. Ultrasound and contrast enhanced ultrasound imaging in the diagnosis of acute aortic pathologies [J]. Vasa, 2019, 48(1): 17-22.
|
17 |
Porter TR, Xie F. Contrast echocardiography: latest developments and clinical utility [J]. Curr Cardiol Rep, 2015, 17(3): 569.
|
18 |
Kang ST, Yeh CK. Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design [J]. Chang Gung Med J, 2012, 35(2): 125-139.
|
19 |
Dave JK, Kulkarni SV, Pangaonkar PP, et al. Non-invasive intra-cardiac pressure measurements using subharmonic-aided pressure estimation: proof of concept in humans [J]. Ultrasound Med Biol, 2017, 43(11): 2718-2724.
|
20 |
Li F, Wang L, Fan YB, et al. Simulation of noninvasive blood pressure estimation using ultrasound contrast agent microbubbles [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2012, 59(4): 715-726.
|
21 |
Bouakaz A, Frinking PJ, De Jong N, et al. Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas bubbles [J]. Ultrasound Med Biol, 1999, 25(9): 1407-1415.
|
22 |
Shi WT, Forsberg F, Raichlen JS, et al. Pressure dependence of subharmonic signals from contrast microbubbles [J]. Ultrasound Med Biol, 1999, 25(2): 275-283.
|
23 |
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. Investigating the efficacy of subharmonic aided pressure estimation for portal vein pressures and portal hypertension monitoring [J]. Ultrasound Med Biol, 2012, 38(10): 1784-1798.
|
24 |
Gupta I, Eisenbrey J, Stanczak M, et al. Effect of pulse shaping on subharmonic aided pressure estimation in vitro and in vivo [J]. J Ultrasound Med, 2017, 36(1): 3-11.
|
25 |
Dave JK, Halldorsdottir VG, Eisenbrey JR, et al. On the implementation of an automated acoustic output optimization algorithm for subharmonic aided pressure estimation [J]. Ultrasonics, 2013, 53(4): 880-888.
|
26 |
Forsberg F, Gupta I, Machado P, et al. Contrast-Enhanced Subharmonic Aided Pressure Estimation (SHAPE) using ultrasound imaging with a focus on identifying portal hypertension [J]. J Vis Exp, 2020, (166): 10.3791/62050.
|
27 |
Esposito C, Dickie K, Forsberg F, et al. Developing an interface and investigating optimal parameters for real-time intracardiac subharmonic-aided pressure estimation [J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(3): 579-585.
|
28 |
Kim MY, Suk KT, Baik SK, et al. Hepatic vein arrival time as assessed by contrast-enhanced ultrasonography is useful for the assessment of portal hypertension in compensated cirrhosis [J]. Hepatology, 2012, 56(3): 1053-1062.
|
29 |
Jeong WK, Kim TY, Sohn JH, et al. Severe portal hypertension in cirrhosis: evaluation of perfusion parameters with contrast-enhanced ultrasonography [J]. PLoS One, 2015, 10(3): e0121601.
|
30 |
Eisenbrey JR, Dave JK, Halldorsdottir VG, et al. Chronic liver disease: noninvasive subharmonic aided pressure estimation of hepatic venous pressure gradient [J]. Radiology, 2013, 268(2): 581-588.
|
31 |
Gupta I, Eisenbrey JR, Machado P, et al. Diagnosing portal hypertension with noninvasive subharmonic pressure estimates from a US contrast agent [J]. Radiology, 2021, 298(1): 104-111.
|
32 |
Nagueh SF. Non-invasive assessment of left ventricular filling pressure [J]. Eur J Heart Fail, 2018, 20(1): 38-48.
|
33 |
Dini FL, Traversi E, Franchini M, et al. Contrast-enhanced Doppler hemodynamics for noninvasive assessment of patients with chronic heart failure and left ventricular systolic dysfunction [J]. J Am Soc Echocardiogr, 2003, 16(2): 124-131.
|
34 |
Gupta I, Eisenbrey JR, Machado P, et al. On Factors Affecting Subharmonic-aided Pressure Estimation (SHAPE) [J]. Ultrason Imaging, 2019, 41(1): 35-48.
|