切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (05) : 459 -466. doi: 10.3877/cma.j.issn.1672-6448.2022.05.012

基础研究

pH响应型纳米探针用于超声/光声成像引导下的乳腺癌光热治疗
万莉1, 唐芮1, 操雨婷1, 程晨1, 林晓红2, 蒋琴琴1, 胡中倩3, 李攀1,()   
  1. 1. 400010 重庆医科大学附属第二医院超声科;400010 重庆医科大学超声影像学研究所
    2. 401121 重庆市人民医院超声科
    3. 210009 江苏南京,东南大学附属中大医院超声医学科
  • 收稿日期:2021-09-25 出版日期:2022-05-01
  • 通信作者: 李攀
  • 基金资助:
    国家自然科学基金面上项目(81971628); 重庆市教委科学技术研究项目(KJZD-K201900401); 重庆市卫健委中青年医学高端人才项目(2019GDRC006)

pH-responsive nanoprobes for ultrasonic/photoacoustic imaging guided photothermal therapy of breast cancer in vitro

Li Wan1, Rui Tang1, Yuting Cao1, Chen Cheng1, Xiaohong Lin2, Qinqin Jiang1, Zhongqian Hu3, Pan Li1,()   

  1. 1. Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China
    2. Department of Ultrasound, Chongqing People's Hospital, Chongqing 401121, China
    3. Department of Ultrasound, Zhongda Hospital Southeast Universtiy, Nanjing 210009, China
  • Received:2021-09-25 Published:2022-05-01
  • Corresponding author: Pan Li
引用本文:

万莉, 唐芮, 操雨婷, 程晨, 林晓红, 蒋琴琴, 胡中倩, 李攀. pH响应型纳米探针用于超声/光声成像引导下的乳腺癌光热治疗[J]. 中华医学超声杂志(电子版), 2022, 19(05): 459-466.

Li Wan, Rui Tang, Yuting Cao, Chen Cheng, Xiaohong Lin, Qinqin Jiang, Zhongqian Hu, Pan Li. pH-responsive nanoprobes for ultrasonic/photoacoustic imaging guided photothermal therapy of breast cancer in vitro[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(05): 459-466.

目的

评估负载聚多巴胺(PDA)的pH响应诊疗一体化碳酸钙(CaCO3)纳米探针的体外超声/光声双模态成像效果及光热治疗疗效。

方法

通过一锅气相扩散法及两步法制备聚乙二醇(PEG)修饰的搭载PDA的CaCO3纳米探针(CaCO3-PDA-PEG),观察其宏观及微观形貌、粒径、红外光谱、稳定性等表征;监测该纳米探针体外超声/光声双模态成像效果和pH响应超声造影显像能力,评估纳米探针的光热转换性能和细胞毒性并通过共聚焦显微镜观察其肿瘤细胞靶向能力;最后,通过细胞增殖实验和活死细胞染色评估纳米探针的体外光热杀瘤效率。

结果

成功制备CaCO3-PDA-PEG纳米探针,呈球形,大小均一,平均粒径约为258 nm,表面电位约为-21 mV;该纳米探针可明显增强光声显像效果,光声信号随纳米探针浓度升高而增强;在肿瘤酸性微环境中,CaCO3-PDA-PEG遇H+可产生二氧化碳气泡进而增强超声造影成像;激光共聚焦显微镜下观察,纳米探针可被动靶向4T1细胞;CaCO3-PDA-PEG(4 mg/ml)与4T1乳腺癌细胞共同孵育,无激光辐照时,细胞存活率高达92.31%;联合808 nm激光辐照后,对肿瘤细胞具有明显的光热杀伤效应,细胞存活率下降至26.61%,同时激光共聚焦显微镜下见大量红色荧光(死细胞)。

结论

所制备的CaCO3-PDA-PEG纳米探针具有良好的pH响应能力,可显著增强体外超声/光声双模态显像效果和光热治疗疗效,为进一步开发可视化肿瘤精准光热治疗方式奠定了基础。

Objective

To prepare CaCO3 nanoprobes loaded with polydopamine (PDA) of pH-responsive diagnosis and treatment, and evaluate their effects in ultrasonic/photoacoustic dual-mode imaging and photothermal therapy of breast cancer in vitro.

Methods

PEG-modified CaCO3 nanoprobes (CaCO3-PDA-PEG) were prepared by one-pot gas phase diffusion method and two-step method. The macroscopic and microscopic morphology, particle size, infrared spectrum, stability, and other characteristics of CaCO3-PDA-PEG nanoprobes were evaluated. The ultrasonic/photoacoustic dual-mode imaging effect and pH-responsive CEUS imaging ability of the nanoprobes were detected. Then, we evaluated the photothermal conversion efficiency and cytotoxicity of the nanoprobes. Also, the tumor cell targeting ability was assessed by confocal microscopy. Finally, cell proliferation assay and live and dead cell staining were used to evaluate the tumor killing efficiency of the nanoprobes in vitro.

Results

We prepared the CaCO3-PDA-PEG nanoprobes successfully. These spherical nanoprobes were uniform in size, with an average particle size of ~258 nm and a surface potential of ~-21 mV. Besides, the nanoprobes could obviously enhance the photoacoustic imaging signal with the increase of the concentration. Furthermore, CaCO3-PDA-PEG nanoprobes could produce CO2 bubbles when exposed to H+ in the acidic tumor microenvironment (pH 6.5 and pH 5.5), which enhanced CEUS imaging signal. Confocal laser scanning microscopy showed that the nanoprobes could target tumor cells efficiently in a passive way. When incubated with 4T1 cells, these nanoprobes (4 mg/ml) showed a negligible cytotoxicity as the cell survival rate was as high as 92.31%. Yet, once irradiated by an 808 nm laser, CaCO3-PDA-PEG nanoprobes had an obvious photothermal killing effect. The tumor cell survival rate decreased to 26.61% and there was a large amount of red fluorescence (dead cells) under confocal laser scanning microscope.

Conclusion

The prepared pH-responsive CaCO3-PDA-PEG nanoprobes could significantly enhance the ultrasonic/photoacoustic dual-mode imaging signal and photothermal therapy efficacy for tumors in vitro, laying a foundation for the further development of accurate visualized photothermal therapy for tumors.

图1 碳酸钙(CaCO3)-聚多巴胺(PDA)-聚乙二醇(PEG)纳米探针的表征。图a为CaCO3、PDA、CaCO3-PDA-PEG混悬液实物图;图b为光学显微镜下观察CaCO3-PDA-PEG;图c为激光共聚焦显微镜下观察CaCO3-PDA-PEG;图d为透射电镜下观察CaCO3-PDA-PEG;图e为CaCO3-PDA-PEG粒径分布图;图f为傅里叶变换红外光谱;图g为纳米探针的紫外-可见吸收光谱图;图h为热重分析图;图i为PEG修饰前后纳米探针的混悬液实物图。标尺:图b、c为100 μm,图d为200 nm注:PBS为磷酸盐缓冲液,FBS为胎牛血清
图2 碳酸钙(CaCO3)-聚多巴胺(PDA)-聚乙二醇(PEG)纳米探针体外超声/光声成像。图a为不同浓度CaCO3-PDA-PEG纳米探针体外光声成像图像;图b为不同pH条件下不同浓度CaCO3-PDA-PEG纳米探针体外超声造影图注:PBS为磷酸盐缓冲液
图3 碳酸钙(CaCO3)-聚多巴胺(PDA)-聚乙二醇(PEG)在808 nm近红外激光辐照下光热转换能力研究。图a、b为不同浓度CaCO3-PDA-PEG光热温度-时间曲线及红外热成像图;图c为CaCO3-PDA-PEG在不同功率密度激光辐照下的光热温度-时间曲线;图d为CaCO3-PDA-PEG在激光辐照下5次开-关循环的光热温度-时间曲线
图4 激光共聚焦显微镜观察4T1细胞对碳酸钙(CaCO3)-聚多巴胺(PDA)-聚乙二醇(PEG)的吞噬情况。标尺:50 μm
图5 碳酸钙(CaCO3)-聚多巴胺(PDA)-聚乙二醇(PEG)纳米探针体外光热抗肿瘤效果评价。图a为不同浓度CaCO3-PDA-PEG纳米探针与4T1细胞共孵育24 h后的相对细胞存活率;图b为不同浓度CaCO3-PDA-PEG纳米探针光热治疗4T1细胞后的相对细胞存活率;图c为4T1细胞经不同处理后的激光共聚焦图(绿/红分别代表活/死细胞)。标尺:50 μm
1
Zou Y, Li M, Xiong T, et al. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy [J]. Small, 2020, 16(18): e1907677.
2
Zhang W, Zhang CC, Wang XY, et al. Light-responsive core-shell nanoplatform for bimodal imaging-guided photothermal therapy-primed cancer immunotherapy [J]. ACS Appl Mater Interfaces, 2020, 12(43): 48420-48431.
3
Ren W, Yan Y, Zeng L, et al. A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy [J]. Adv Healthc Mater, 2015, 4(10): 1526-1536.
4
Ovais M, Mukherjee S, Pramanik A, et al. Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment [J]. Adv Mater, 2020, 32(22): e2000055.
5
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment [J]. Adv Drug Deliv Rev, 2017, 113: 24-48.
6
Yang W, Zhang F, Deng H, et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy [J]. ACS Nano, 2020, 14(1): 620-631.
7
Li F, Du Y, Liu J, et al. Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors [J]. Adv Mater, 2018, 30(35): e1802808.
8
何雨蓓, 郝兰, 李倩茹, 等. 基于酞菁铁的靶向乳腺癌纳米粒多模态成像和光热效应的实验研究 [J]. 第三军医大学学报, 2020, 42(8): 772-782.
9
Wang S, Lin J, Wang Z, et al. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy [J]. Adv Mater, 2017, 29(35): 1701013.
10
Maleki Dizaj S, Sharifi S, Ahmadian E, et al. An update on calcium carbonate nanoparticles as cancer drug/gene delivery system [J]. Expert Opin Drug Deliv, 2019, 16(4): 331-345.
11
Dong Z, Feng L, Hao Y, et al. Synthesis of hollow biomineralized CaCO3-polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity [J]. J Am Chem Soc, 2018, 140(6): 2165-2178.
12
Xia Y, Li W, Cobley CM, et al. Gold nanocages: from synthesis to theranostic applications [J]. Acc Chem Res, 2011, 44(10): 914-924.
13
Liu Z, Robinson JT, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J]. J Am Chem Soc, 2008, 130(33): 10876-10877.
14
Liu X, Tao H, Yang K, et al. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors [J]. Biomaterials, 2011, 32(1): 144-151.
15
Huang J, Zhang L, Zhou W, et al. Dual mitigation of immunosuppression combined with photothermal inhibition for highly effective primary tumor and metastases therapy [J]. Biomaterials, 2021, 274: 120856.
[1] 张旭, 徐建平, 苏冬明, 王彩芬, 王大力, 张文智. 男性乳腺肿块的超声造影特征[J]. 中华医学超声杂志(电子版), 2023, 20(08): 854-859.
[2] 邵华, 那子悦, 荆慧, 李博, 王秋程, 程文. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 849-853.
[3] 章美武, 吕淑懿, 范晓翔, 庄鲁辉, 裘玉琴, 张柏松, 张燕. 超声引导下抽液联合高渗葡萄糖冲洗治疗乳腺癌术后皮下积液的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(03): 327-331.
[4] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[5] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[6] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[7] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[8] 王嘉, 郭宝良, 王杉, 张殿龙, 王弥迦, 周天阳, 张建国, 金锋. 初诊Ⅳ期乳腺癌诊疗临床实践指南解读[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 250-254.
[9] 张彬月, 贾红燕. 紫杉醇/白蛋白紫杉醇为基础的化疗联合PD-1/PD-L1抑制剂治疗三阴性乳腺癌的疗效和安全性:荟萃分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 52-58.
[10] 吴亚婷, 张胜行, 王水良. RNA m6A甲基化修饰调控异常在乳腺癌转移中作用的研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 45-52.
[11] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[12] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[13] 徐熠琳, 路红, 刘雪静, 郝玉娟, 于子玲, 朱鹰. 影像学进展对乳腺癌腋窝精准治疗的价值[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1054-1061.
[14] 陈青, 吴克瑾. 《中国妊娠期与哺乳期乳腺癌临床实践指南(2022版)》基本问题解读[J]. 中华临床医师杂志(电子版), 2022, 16(11): 1050-1053.
[15] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
阅读次数
全文


摘要