1 |
Evans A, Trimboli RM, Athanasiou A, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging [J]. Insights Imaging, 2018, 9(4): 449-461.
|
2 |
周建桥, 詹维伟. 超声乳腺影像报告数据系统及其解读 [J/CD]. 中华超声医学杂志(电子版), 2011, 10 (3): 1332-1341.
|
3 |
Lam DL, Entezari P, Duggan C, et al. A phased approach to implementing the Breast Imaging Reporting and Data System (BI-RADS) in low-income and middle-income countries [J]. Cancer, 2020, 126 Suppl 10: 2424-2430.
|
4 |
Stavros AT, Freitas AG, deMello GGN, et al. Ultrasound positive predictive values by BI-RADS categories 3-5 for solid masses: An independent reader study [J]. Eur Radiol, 2017, 27(10): 4307-4315.
|
5 |
Varella MAS, da Cruz JT, Rauber A, et al. Role of BI-RADS ultrasound subcategories 4A to 4C in predicting breast cancer [J]. Clinical breast cancer, 2018, 18(4): e507-e511.
|
6 |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
|
7 |
Gillies RJ, Kinahan PE, Hricak HJR. Radiomics: images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577.
|
8 |
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype [J]. Cancer Res, 2017, 77(21): e104-e107.
|
9 |
Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building [J]. Stat Med, 2007, 26(30): 5512-5528.
|
10 |
Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature [J]. JAMA, 2017, 318(14): 1377-1384.
|
11 |
American Cancer Society. Breast Cancer Facts & Figures 2019-2020 [M]. Atlanta: American Cancer Society, 2019.
|
12 |
Amin MB, Edge SB, Greene FL, et al. AJCC Cancer Staging Manual [M]. 8th ed. New York: Springer, 2017.
|
13 |
Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? [J]. Cancer Commun (Lond), 2019, 39(1): 22.
|
14 |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2018, 68(6): 394-424.
|
15 |
Upadhaya T, Vallieres M, Chatterjee A, et al. Comparison of radiomics models built through machine learning in a multicentric context with independent testing: identical data, similar algorithms, different methodologies [J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3(2): 192-200.
|
16 |
Uddin S, Khan A, Hossain ME, et al. Comparing different supervised machine learning algorithms for disease prediction [J]. BMC Med Inform Decis Mak, 2019, 19(1): 281.
|
17 |
Luo WQ, Huang QX, Huang XW, et al. Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS [J]. Sci Rep, 2019, 9(1): 11921.
|
18 |
Yu FH, Wang JX, Ye XH, et al. Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer [J]. Eur J Radiol, 2019, 119: 108658.
|
19 |
Dasgupta A, Brade S, Sannachi L, et al. Quantitative ultrasound radiomics using texture derivatives in prediction of treatment response to neo-adjuvant chemotherapy for locally advanced breast cancer [J]. 2020, 11(42): 3782-3792.
|