切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (08) : 837 -846. doi: 10.3877/cma.j.issn.1672-6448.2022.08.020

基础研究

肽功能化载GOD智能响应型相变纳米粒用于乳腺癌超声诊疗的实验研究
谢卓晏1, 罗远利1, 乔斌1, 李锦瑞2, 周志益3, 王志刚2, 任建丽1,()   
  1. 1. 400010 重庆医科大学附属第二医院超声科
    2. 400016 重庆医科大学超声影像学研究所 超声分子影像重庆市重点实验室
    3. 400013 重庆市人民医院老年病科
  • 收稿日期:2021-02-04 出版日期:2022-08-01
  • 通信作者: 任建丽
  • 基金资助:
    重庆市渝中区基础研究与前沿探索项目(20190112); 国家自然科学基金面上项目(81873901); 重庆市自然科学基金重点项目(cstc2019jcyj-zdxmX2020); 重庆市中青年医学高端人才培养项目; 宽仁骨干人才项目(KR2019G001)

Peptide-functionalized glucose oxidase-loaded phase-transformation and smart responsive nanoparticles for ultrasound imaging and breast cancer treatment

Zhuoyan Xie1, Yuanli Luo1, Bin Qiao1, Jinrui Li2, Zhiyi Zhou3, Zhigang Wang2, Jianli Ren1,()   

  1. 1. Department of Ultrasonography,the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
    2. Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing, 400016, China
    3. Department of Geriatrics, Chongqing People's Hospital, Chongqing 400013, China
  • Received:2021-02-04 Published:2022-08-01
  • Corresponding author: Jianli Ren
引用本文:

谢卓晏, 罗远利, 乔斌, 李锦瑞, 周志益, 王志刚, 任建丽. 肽功能化载GOD智能响应型相变纳米粒用于乳腺癌超声诊疗的实验研究[J/OL]. 中华医学超声杂志(电子版), 2022, 19(08): 837-846.

Zhuoyan Xie, Yuanli Luo, Bin Qiao, Jinrui Li, Zhiyi Zhou, Zhigang Wang, Jianli Ren. Peptide-functionalized glucose oxidase-loaded phase-transformation and smart responsive nanoparticles for ultrasound imaging and breast cancer treatment[J/OL]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(08): 837-846.

目的

制备一种肿瘤归巢穿膜肽tLyp-1介导的载葡萄糖氧化酶(GOD)和全氟正戊烷(PFP)纳米粒(tLyp-1-GOD@PFP NPs),观察其基本表征、体内外超声成像以及对人乳腺癌MDA-MB-231细胞的体外靶向及体内外抗肿瘤能力。

方法

采用乳化法制备tLyp-1-GOD@PFP NPs,观察其形态特点,检测其理化性质(粒径、电位、包封率、释药率);低强度聚焦超声(LIFU)辐照纳米粒后,光镜下观察其相变情况,并观察其体内外超声成像效果;激光共聚焦显微镜和流式细胞仪检测纳米粒对MDA-MB-231细胞的靶向能力;使用CCK-8法和流式法评估在LIFU辐照下该纳米粒对MDA-MB-231细胞的抗肿瘤能力;通过荷瘤裸鼠尾静脉注射纳米粒并观察肿瘤体积变化和裸鼠体重以探索其体内抑瘤效果。

结果

制备的纳米粒呈球形壳核结构,大小均一,其平均粒径为(227.4±12.5)nm,平均电位为(-16.5±2.7)mV,GOD的包封率为(12.93±0.46)%,载药率为(1.62±0.06)%,24 h释药率可达(51.73±3.22)%。光镜下相变和体外超声成像具有辐照时间依赖性。CCK-8和流式细胞仪检测结果证明tLyp-1-GOD@PFP NPs具有良好的生物安全性,并且在LIFU辐照后其抑瘤效果较好。同时,体内实验证实该纳米粒具有良好的超声造影能力和靶向能力,体内治疗结果也表明该纳米粒可有效抑制肿瘤增殖。

结论

本研究成功制备了tLyp-1介导的载GOD和PFP的相变型纳米粒,对MDA-MB-231细胞具有特异靶向能力,在LIFU辐照下,可实现体内外超声成像,同时产生良好的抗肿瘤效果。

Objective

To prepare tumor-homing tLyp-1-mediated nanoparticles loaded with glucose oxidase (GOD) and perfluoron-pentane (PFP) (TLyp-1-GOD@PFP NPs), to evaluate their physicochemical properties, ability of targeting, and antitumor efficacy in human breast cancer MDA-MB-231 cells under irradiation by low intensity focused ultrasound (LIFU), and to explore their use in ultrasound imaging in vitro and vivo.

Methods

TLyp-1-GOD@PFP NPs were prepared by a phacoemulsification method. Their characteristics including particle size, potential, drug release rate, and entrapment efficiency were detected. The phase-change of the nanoparticles irradiated by LIFU was observed under an optical microscope. Meanwhile, their use in ultrasound imaging in vitro and vivo was explored. The targeting efficacy of tLyp-1-GOD@PFP NPs in MDA-MB-231 cells was evaluated by laser confocal microscopy and flow cytometry. Besides, CCK-8 assay was applied to detect the cytotoxicity of the nanoparticles. Flow cytometry was also carried out to measure the percentage of apoptotic cells in all groups. In order to explore their antitumor effect in vivo, the nanoparticles were injected into the tail vein of nude mice bearing heterotopic xenografts of MDA-MB-231 cells and then, the changes of tumor volume and weight of nude mice were observed.

Results

TLyp-1-GOD@PFP NPs were successfully prepared, and showed spherical shell-core structure in shape and were uniform in size, with an average size of (227.4±12.5) nm, at an average potential of (-16.5±2.7) mV. The entrapment efficiency and the drug loading rate of GOD were (12.93±0.46)% and (1.62±0.06)%, respectively. The drug release rate under irradiation could reach (51.73±3.22)% at 24 h. Phase-change of the nanoparticles observed under microscope and ultrasound imaging in vitro were time-dependent. The results of CCK-8 assay and flow cytometry exhibited the excellent biosafety and proved that the tLyp-1-GOD@PFP NPs with LIFU enhanced the inhibition proliferation. In the meantime, the contrast-enhanced ultrasound ability and targeting ability of the nanoparticles in vivo was confirmed. Therapeutic effect in vivo also showed that the nanoparticles could effectively inhibit tumor proliferation and anti-tumor effect.

Conclusion

TLyp-1-mediated phase-transformation nanoparticles loaded with GOD and PFP have been successfully prepared in this study, which can be used for ultrasound molecular imaging and realize targeting therapy irradiated by LIFU in vitro and in vivo.

图1 tLyp-1-GOD@PFP NPs的基本表征。图a为靶向型相变纳米粒tLyp-1-GOD@PFP NPs的组成结构平面示意图;图b为透射电镜图;图c为光镜图;图d为各组纳米粒的粒径;图e为各组纳米的电位;图f为GOD的标准曲线图;图g为体外GOD释放率曲线
图2 tLyp-1-GOD@PFP NPs的相变能力。图a为光镜下体外声致相变图;图b为体外声致相变温度变化;图c为体外超声及造影图像;图d为体外超声及造影图像定量分析图
图3 tLyp-1-GOD@PFP NPs的靶向性检测。图a为激光共聚焦观察tLyp-1-GOD@PFP NPs对MDA-MB-231细胞的靶向情况;图b为流式细胞定量检测靶向效果
图4 纳米粒细胞毒性检测结果
图5 流式细胞仪检测细胞凋亡情况
图6 tLyp-1-GOD@PFP NPs的体内超声及造影成像以及定量分析。图a为激光辐照前后GOD@PFP NPs和tLyp-1-GOD@PFP NPs的超声及造影成像;图b,c为激光辐照前后2种纳米粒的回声强度比较(n=5,a、b、c、d表示与辐照前比较P<0.05)
图7 体内治疗效果。图a为荷瘤鼠的肿瘤体积变化率;图b为荷瘤鼠的体重变化
1
Vairavan R, Abdullah O, Retnasamy PB, et al. A brief review on breast carcinoma and deliberation on current non invasive imaging techniques for detection [J]. Curr Med Imaging Rev, 2019, 15: 85-121.
2
Warburg O. On the origin of cancer cells [J]. Science, 1956, 123(3191): 309-314.
3
Zhang YH, Qiu WX, Zhang MK, et al. MnO2 motor: a prospective cancer-starving therapy promoter [J]. ACS Appl Mater Interfaces, 2018, 10(17): 15030-15039.
4
Zhang C, Ni D, Liu Y, et al. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy [J]. Nature Nanotechnology, 2017, 12(4): 378-386.
5
Fu LH, Qi C, Lin J, et al. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment [J]. Chem Soc Rev, 2018, 47(17): 6454-6472.
6
Zhang R, Feng L, Dong Z, et al. Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy [J]. Biomaterials, 2018, 162: 123-131.
7
Roth L, Agemy L, Kotamraju VR, et al. Transtumoral targeting enabled by a novel neuropilin-binding peptide [J]. Oncogene, 2012, 31(33): 3754-3763.
8
Prud'homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity [J]. Oncotarget, 2012, 3(9): 921-939.
9
Jubb AM, Strickland LA, Liu SD, et al. Neuropilin-1 expression in cancer and development [J]. J Pathol, 2012, 226(1): 50-60.
10
Ruoslahti E. Tumor penetrating peptides for improved drug delivery [J]. Adv Drug Deliv Rev, 2017, 110-111: 3-12.
11
Díaz-López R, Tsapis N, Libong D, et al. Phospholipid decoration of microcapsules containing perfluorooctyl bromide used as ultrasound contrast agents [J]. Biomaterials, 2009, 30(8): 1462-1472.
12
Zhu L, Zhao H, Zhou Z, et al. Peptide-functionalized phase-transformation nanoparticles for lifu-assisted tumor imaging and therapy [J]. Nano Letters, 2018, 18(3): 1831-1841.
13
赵红雲, 梅浙川, 郑元义, 等. 液态氟碳纳米粒液-气相变治疗肝癌的体外实验[J]. 中国介入影像与治疗学, 2015, 12(2): 114-117.
14
Zhou LQ, Li P, Cui XW, et al. Ultrasound nanotheranostics in fighting cancer: Advances and prospects [J]. Cancer Lett, 2020, 470: 204-219.
15
姚元志, 王志刚, 杨珂, 等. 对比观察脂质纳泡与微泡在高强度聚焦超声消融兔肝中的增效作用[J]. 中国介入影像与治疗学, 2015, 12(8): 493-498.
16
李奥, 王志刚. 液态氟碳纳米粒: 一种多功能影像学造影剂[J]. 临床超声医学杂志, 2008, 10(12): 830-832.
17
Liu J, Shang T, Wang F, et al. Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging [J]. Int J Nanomedicine, 2017, 12: 911-923.
18
沈红霞, 郑元义, 周洋, 等. 包裹液态氟碳的高分子超声造影剂的制备及体外显影实验[J]. 中国介入影像与治疗学, 2012, 9(4): 291-294.
19
Wang H, Wang X, Zhang Y, et al. Systemic delivery of NAC-1 siRNA by neuropilin-targeted polymersomes sensitizes antiangiogenic therapy of metastatic triple-negative breast cancer [J]. Biomacromolecules, 2020, 21(12): 5119-5127.
20
Xiao C, Qi X, Maitani Y, et al. Sustained release of cisplatin from multivesicular liposomes: potentiation of antitumor efficacy against S180 murine carcinoma [J]. J Pharm Sci, 2004, 93(7): 1718-1724.
21
Lin CY , Pitt WG. Acoustic droplet vaporization in biology and medicine [J]. Biomed Res Int, 2013, 2013: 404361.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 刘伟, 牛云峰, 安杰. LINC01232 通过miR-516a-5p/BCL9 轴促进三阴性乳腺癌的恶性进展[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 330-338.
[3] 杨柳, 宋振川, 王新乐. 乳腺癌改良根治术联合背阔肌复位的临床疗效评估[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 269-273.
[4] 牛海刚, 郭文科. 三阴性乳腺癌组织中双特异性磷酸酶14与核受体相互作用蛋白1的表达及预后价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 199-205.
[5] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[6] 宋佳, 汪波, 孙凯律, 商江峰, 吴旦平, 肇毅. 吲哚菁绿荧光显影联合亚甲蓝染色在乳腺癌前哨淋巴结活检中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 498-501.
[7] 张钊, 骆成玉, 张树琦, 何平, 李旭斌. 不同术式治疗早期乳腺癌的效果及并发症发生率、复发率比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 494-497.
[8] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[9] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[10] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[11] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[12] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[13] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[14] 张梦婷, 穷拉姆, 色珍, 李逸群, 德庆旺姆. 西藏地区藏族乳腺癌新辅助化疗的真实世界研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 441-446.
[15] 赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 基于自动乳腺超声的列线图模型早期预测HER-2阳性乳腺癌新辅助化疗病理完全缓解的临床价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(04): 355-362.
阅读次数
全文


摘要