切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2022, Vol. 19 ›› Issue (09) : 1003 -1007. doi: 10.3877/cma.j.issn.1672-6448.2022.09.023

综述

影像及影像组学评价肝细胞癌微血管侵犯的应用现状
梁梓南1, 杨薇1,()   
  1. 1. 100089 北京大学肿瘤医院暨北京市肿瘤防治研究所超声科,恶性肿瘤发病机制及转化研究教育部重点实验室
  • 收稿日期:2020-11-27 出版日期:2022-09-01
  • 通信作者: 杨薇
  • 基金资助:
    国家自然科学基金(81773286,81971718); 首都卫生发展科研专项(首发2018-2-2154)

Current status and future prospective of imaging and radiomics in evaluating microvascular invasion in hepatocellular carcinoma

Zinan Liang1, Wei Yang1()   

  • Received:2020-11-27 Published:2022-09-01
  • Corresponding author: Wei Yang
引用本文:

梁梓南, 杨薇. 影像及影像组学评价肝细胞癌微血管侵犯的应用现状[J]. 中华医学超声杂志(电子版), 2022, 19(09): 1003-1007.

Zinan Liang, Wei Yang. Current status and future prospective of imaging and radiomics in evaluating microvascular invasion in hepatocellular carcinoma[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2022, 19(09): 1003-1007.

图1 微血管侵犯形成过程示意图。图a示癌细胞增生,图b示浸润周围基质和血管壁、破坏内皮细胞,图c示微血管血栓形成,图d示癌栓增大、脱落、转移
1
Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer: worldwide incidence and trends [J]. Gastroenterology, 2004, 127(5 Suppl 1): S5-S16.
2
El-Serag HB. Hepatocellular carcinoma [J]. N Engl J Med, 2011, 365(12): 1118-1127.
3
Colecchia A, Schiumerini R, Cucchetti A, et al. Prognostic factors for hepatocellular carcinoma recurrence [J]. World J Gastroenterol, 2014, 20(20): 5935-5950.
4
刘玉海. 多层螺旋CT评估肝癌射频消融术后肿瘤灭活的临床价值 [J]. 中国医学装备, 2016, 13(2): 77-80.
5
石全. 等渗甘露醇在多层螺旋CT小肠造影中的定量研究及临床应用价值 [J]. 临床医学, 2017, 37(5): 29-31.
6
Iwatsuki S, Dvorchik I, Marsh JW, et al. Liver transplantation for hepatocellular carcinoma: a proposal of a prognostic scoring system [J]. J Am Coll Surg, 2000, 191(4): 389-394.
7
Rodriguez-Peralvarez M, Luong TV, Andreana L, et al. A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability [J]. Ann Surg Oncol, 2013, 20(1): 325-339.
8
Portolani N, Coniglio A, Ghidoni S, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications [J]. Ann Surg, 2006, 243(2): 229-235.
9
Shi M, Zhang CQ, Zhang YQ, et al. Micrometastases of solitary hepatocellular carcinoma and appropriate resection margin [J]. World J Surg, 2004, 28(4): 376-381.
10
Toyosaka A, Okamoto E, Mitsunobu M, et al. Pathologic and radiographic studies of intrahepatic metastasis in hepatocellular carcinoma; the role of efferent vessels [J]. HPB Surg, 1996, 10(2): 97-103; discussion 103-104.
11
Clark HP, Carson WF, Kavanagh PV, et al. Staging and current treatment of hepatocellular carcinoma [J]. Radiographics, 2005, 25 Suppl 1: S3-S23.
12
丛文铭, 步宏, 陈杰, 等. 原发性肝癌规范化病理诊断指南(2015年版) [J]. 解放军医学杂志, 2015, 40(11): 865-872.
13
陈希奎, 贺君, 邢小明, 等. 肝癌微血管浸润术前多层螺旋CT评估的临床研究 [J]. 中国CT和MRI杂志, 2019, 17(10): 72-74, 153.
14
Onaca N, Davis GL, Jennings LW, et al. Improved results of transplantation for hepatocellular carcinoma: a report from the International Registry of Hepatic Tumors in Liver Transplantation [J]. Liver Transpl, 2009, 15(6): 574-580.
15
Feng LH, Dong H, Lau WY, et al. Novel microvascular invasion-based prognostic nomograms to predict survival outcomes in patients after R0 resection for hepatocellular carcinoma [J]. J Cancer Res Clin Oncol, 2017, 143(2): 293-303.
16
Mazzaferro V, Llovet JM, Miceli R, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis [J]. Lancet Oncol, 2009, 10(1): 35-43.
17
Pawlik TM, Delman KA, Vauthey JN, et al. Tumor size predicts vascular invasion and histologic grade: Implications for selection of surgical treatment for hepatocellular carcinoma [J]. Liver Transpl, 2005, 11(9): 1086-1092.
18
Sugino T, Yamaguchi T, Hoshi N, et al. Sinusoidal tumor angiogenesis is a key component in hepatocellular carcinoma metastasis [J]. Clin Exp Metastas, 2008, 25(7): 835-841.
19
Li J, Zhou J, Yang PH, et al. Nomograms for survival prediction in patients undergoing liver resection for hepatitis B virus related early stage hepatocellular carcinoma [J]. Eur J Cancer, 2016, 62: 86-95.
20
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: Extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
21
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges [J]. Magn Reson Imaging, 2012, 30(9): 1234-1248.
22
Mitra S, Shankar BU. Integrating radio imaging with gene expressions toward a personalized management of cancer [J]. Ieee T Hum-Mach Syst, 2014, 44(5): 664-677.
23
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data [J]. Radiology, 2016, 278(2): 563-577.
24
Levy MA, Freymann JB, Kirby JS, et al. Informatics methods to enable sharing of quantitative imaging research data [J]. Magn Reson Imaging, 2012, 30(9): 1249-1256.
25
Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
26
Shen D, Wu G, Suk HI. Deep learning in medical image analysis [J]. Annu Rev Biomed Eng, 2017, 19: 221-248.
27
Bhayana D, Kim TK, Jang HJ, et al. Hypervascular liver masses on contrast-enhanced ultrasound: the importance of washout [J]. AJR Am J Roentgenol, 2010, 194(4): 977-983.
28
Jiang HY, Chen J, Xia CC, et al. Noninvasive imaging of hepatocellular carcinoma: from diagnosis to prognosis [J]. World J Gastroenterol, 2018, 24(22): 2348-2362.
29
Zhu W, Qing X, Yan F, et al. Can the contrast-enhanced ultrasound washout rate be used to predict microvascular invasion in hepatocellular carcinoma? [J]. Ultrasound Med Biol, 2017, 43(8): 1571-1580.
30
涂海斌. 超声造影对小肝癌分级与肝癌微血管癌栓的相关性研究 [D]. 福州: 福建医科大学, 2017.
31
Qiao M, Hu Y, Guo Y, et al. Breast tumor classification based on a computerized breast imaging reporting and data system feature system [J]. J Ultrasound Med, 2018, 37(2): 403-415.
32
Zhang Q, Xiao Y, Suo J, et al. Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography [J]. Ultrasound Med Biol, 2017, 43(5): 1058-1069.
33
Yao Z, Dong Y, Wu G, et al. Preoperative diagnosis and prediction of hepatocellular carcinoma: radiomics analysis based on multi-modal ultrasound images [J]. BMC Cancer, 2018, 18(1): 1089.
34
刘桐桐, 董怡, 韩红, 等. 基于影像组学方法的原发性肝细胞癌微血管侵犯和肿瘤分化等级预测 [J]. 中国医学计算机成像杂志, 2018, 24(1): 83-87.
35
Hu HT, Wang Z, Huang XW, et al. Ultrasound-based radiomics score: a potential biomarker for the prediction of microvascular invasion in hepatocellular carcinoma [J]. Eur Radiol, 2019, 29(6): 2890-2901.
36
Dong Y, Zhou L, Xia W, et al. Preoperative prediction of microvascular invasion in hepatocellular carcinoma: initial application of a radiomic algorithm based on grayscale ultrasound images [J]. Front Oncol, 2020, 10: 353.
37
Dong Y, Wang QM, Li Q, et al. Preoperative prediction of microvascular invasion of hepatocellular carcinoma: radiomics algorithm based on ultrasound original radio frequency signals [J]. Front Oncol, 2019, 9: 1203.
38
卢胜云. HCC微血管侵犯与术前CT表现、术后早期复发相关性研究 [D]. 南宁: 广西医科大学, 2018.
39
Wu D, Tan M, Zhou M, et al. Liver computed tomographic perfusion in the assessment of microvascular invasion in patients with small hepatocellular carcinoma [J]. Invest Radiol, 2015, 50(4): 188-194.
40
Banerjee S, Wang DS, Kim HJ, et al. A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma [J]. Hepatology, 2015, 62(3): 792-800.
41
Renzulli M, Brocchi S, Cucchetti A, et al. Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma? [J]. Radiology, 2016, 279(2): 432-442.
42
Xu X, Zhang HL, Liu QP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma [J]. J Hepatol, 2019, 70(6): 1133-1144.
43
Peng J, Zhang J, Zhang Q, et al. A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma [J]. Diagn Interv Radiol, 2018, 24(3): 121-127.
44
Ma X, Wei J, Gu D, et al. Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT [J]. Eur Radiol, 2019, 29(7): 3595-3605.
45
Kele PG, van der Jagt EJ. Diffusion weighted imaging in the liver [J]. World J Gastroenterol, 2010, 16(13): 1567-1576.
46
Iima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future [J]. Radiology, 2016, 278(1): 13-32.
47
Xu P, Zeng M, Liu K, et al. Microvascular invasion in small hepatocellular carcinoma: is it predictable with preoperative diffusion-weighted imaging? [J]. J Gastroenterol Hepatol, 2014, 29(2): 330-6.
48
Zhao J, Li X, Zhang K, et al. Prediction of microvascular invasion of hepatocellular carcinoma with preoperative diffusion-weighted imaging: a comparison of mean and minimum apparent diffusion coefficient values [J]. Medicine (Baltimore), 2017, 96(33): e7754.
49
Min JH, Kim YK, Lim S, et al. Prediction of microvascular invasion of hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging: Impact of intra-tumoral fat detected on chemical-shift images [J]. Eur J Radiol, 2015, 84(6): 1036-1043.
50
白婷婷. 钆塞酸二钠增强MRI与IVIM-DWI在肝细胞癌微血管侵犯诊断中的价值研究 [D]. 大连: 大连医科大学, 2018.
51
徐萍, 黄梦琪, 廖冰, 等. Gd-EOB-DTPA MRI动态增强预测孤立性肝细胞癌微血管侵犯的单因素及多因素回归分析 [J]. 影像诊断与介入放射学, 2017, 26(1): 31-36.
52
Lee S, Kim SH, Lee JE, et al. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma [J]. J Hepatol, 2017, 67(3): 526-534.
53
Lei Z, Li J, Wu D, et al. Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the milan criteria [J]. JAMA Surg, 2016, 151(4): 356-363.
54
武明辉, 谭红娜, 吴青霞, 等. 肝脏磁共振T2WI图像纹理特征预测肝细胞癌患者微血管侵犯的价值 [J]. 中国癌症杂志, 2018, 28(3): 191-196.
55
Zhu YJ, Feng B, Wang S, et al. Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma [J]. Oncol Lett, 2019, 18(1): 720-732.
56
Zhang R, Xu L, Wen X, et al. A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma [J]. Quant Imaging Med Surg, 2019, 9(9): 1503-1515.
No related articles found!
阅读次数
全文


摘要