1 |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
2 |
Zhou J, Yang W, Liu Q. Cancer challenges worldwide and in China: preparing for the inevitable [J]. Sci China Life Sci, 2022, 65(2): 442-444.
|
3 |
Xu M, Zhou L, Zheng L, et al. Sonodynamic therapy-derived multimodal synergistic cancer therapy [J]. Cancer Lett, 2021, 497: 229-242.
|
4 |
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity [J]. CA Cancer J Clin, 2020, 70(2): 86-104.
|
5 |
Wu N, Fan CH, Yeh CK. Ultrasound-activated nanomaterials for sonodynamic cancer theranostics [J]. Drug Discov Today, 2022, 27(6): 1590-1603.
|
6 |
Lin X, Song J, Chen X, et al. Ultrasound-activated sensitizers and applications [J]. Angew Chem Int Ed Engl, 2020, 59(34): 14212-14233.
|
7 |
Sun L, Wang P, Zhang J, et al. Design and application of inorganic nanoparticles for sonodynamic cancer therapy [J]. Biomater Sci, 2021, 9(6): 1945-1960.
|
8 |
Zhang L, Lin Z, Zeng L, et al. Ultrasound-induced biophysical effects in controlled drug delivery [J]. Sci China Life Sci, 2022, 65(5): 896-908.
|
9 |
Son S, Kim JH, Wang X. Multifunctional sonosensitizers in sonodynamic cancer therapy [J]. Chem Soc Rev, 2020, 49(11): 3244-3261.
|
10 |
Li E, Sun Y, Lv G, et al. Sinoporphyrin sodium based sonodynamic therapy induces anti-tumor effects in hepatocellular carcinoma and activates p53/caspase 3 axis [J]. Int J Biochem Cell Biol, 2019, 113: 104-114.
|
11 |
Li Y, Zhou Q, Deng Z, et al. IR-780 dye as a sonosensitizer for sonodynamic therapy of breast tumor [J]. Sci Rep, 2016, 6(1): 25968.
|
12 |
Dai S, Hu S, Wu C. Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro [J]. Acta Neurochir (Wien), 2009, 151(12): 1655-1661.
|
13 |
徐伟, 李洋, 顾海涛, 等. 超声响应性纳米粒子用于超声/光声成像引导下声动力/饥饿治疗小鼠结直肠癌 [J]. 中国医学影像技术, 2021, 37(7): 967-973.
|
14 |
Sun L, Zhang J, Xu M, et al. Ultrasound microbubbles mediated sonosensitizer and antibody co-delivery for highly efficient synergistic therapy on HER2-positive gastric cancer [J]. ACS Appl Mater Interfaces, 2022, 14(1): 452-463.
|
15 |
高慧洁, 张为民, 王晓怀, 等. 阿霉素对二氢卟吩e6声动力抑制乳腺癌细胞MDA-MB-231生长体外增敏作用 [J]. 南方医科大学学报, 2010, 30(10): 2291-2294.
|
16 |
Harada Y, Ogawa K, Irie Y, et al. Ultrasound activation of TiO2 in melanoma tumors [J]. J Controll Release, 2011, 149(2): 190-195.
|
17 |
Wang P, Tang Q, Zhang L, et al. Ultrasmall barium titanate nanoparticles for highly efficient hypoxic tumor therapy via ultrasound triggered piezocatalysis and water splitting [J]. ACS Nano, 2021, 15(7): 11326-11340.
|
18 |
Feng L, Gai S, He F, et al. Multifunctional bismuth ferrite nanocatalysts with optical and magnetic functions for ultrasound-enhanced tumor theranostics [J]. ACS Nano, 2020, 14(6): 7245-7258.
|
19 |
Gorgizadeh M, Behzadpour N, Salehi F, et al. A MnFe2O4/C nanocomposite as a novel theranostic agent in MRI, sonodynamic therapy and photothermal therapy of a melanoma cancer model [J]. J Alloys Compd, 2020, 816: 152597.
|
20 |
魏凤远. 基于氮掺杂石墨烯量子点与二氧化硫气体前药的自组装纳米材料用于肿瘤声动力/气体联合治疗研究 [D]. 上海: 上海师范大学, 2022.
|
21 |
邹卫娟, 郝俊年, 吴建荣, 等. 氧化铱纳米载药复合物的制备及其用于肿瘤声动力-化疗协同治疗的研究 [J]. 第三军医大学学报, 2021, 43(22): 2395-2406.
|
22 |
Wang L, Niu M, Zheng C, et al. A core-shell nanoplatform for synergistic enhanced sonodynamic therapy of hypoxic tumor via cascaded strategy [J]. Adv Healthc Mater, 2018, 7(22): e1800819.
|
23 |
Wen M, Yu N, Wu S, et al. On-demand assembly of polymeric nanoparticles for longer-blood-circulation and disassembly in tumor for boosting sonodynamic therapy [J]. Bioact Mater, 2022, 18: 242-253.
|
24 |
Huang J, Liu F, Han X, et al. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics [J]. Theranostics, 2018, 8(22): 6178-6194.
|
25 |
Qu F, Wang P, Zhang K, et al. Manipulation of mitophagy by "all-in-one" nanosensitizer augments sonodynamic glioma therapy [J]. Autophagy, 2020, 16(8): 1413-1435.
|
26 |
Liang S, Deng X, Xu G, et al. A Novel Pt–TiO2 Heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy [J]. Adv Funct Mater, 2020, 30(13): 1908598.
|
27 |
Yang CC, Wang CX, Kuan CY, et al. Using C-doped TiO2 nanoparticles as a novel sonosensitizer for cancer treatment [J]. Antioxidants (Basel), 2020, 9(9): 880.
|
28 |
Wang X, Zhong X, Bai L, et al. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy [J]. J Am Chem Soc, 2020, 142(14): 6527-6537.
|
29 |
Wang W, Pan X, Yang H, et al. Bioactive metal-organic frameworks with specific metal-nitrogen (M-N) active sites for efficient sonodynamic tumor therapy [J]. ACS Nano, 2021, 15(12): 20003-20012.
|
30 |
Li C, Yang XQ, An J, et al. Red blood cell membrane-enveloped O2 self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy [J]. Theranostics, 2020, 10(2): 867-879.
|
31 |
Ruan K, Song G, Ouyang G, et al. Role of hypoxia in the hallmarks of human cancer [J]. J Cell Biochem, 2009, 107(6): 1053-1062.
|
32 |
Catalano V, Turdo A, Di Franco S, et al. Tumor and its microenvironment: a synergistic interplay [J]. Semin Cancer Biol, 2013, 23(6 Pt B): 522-532.
|
33 |
Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment [J]. Mol Cancer, 2019, 18(1): 157.
|
34 |
Xu M, Wang P, Sun S, et al. Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy [J]. Nanoscale, 2020, 12(42): 21519-21533.
|
35 |
Ma X, Yao M, Shi J, et al. High intensity focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial-mesenchymal transition [J]. ACS Nano, 2020, 14(11): 15904-15918.
|
36 |
Pan X, Wang W, Huang Z, et al. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy [J]. Angew Chem Int Ed Engl, 2020, 59(32): 13557-13561.
|
37 |
Wan GY, Liu Y, Chen BW, et al. Recent advances of sonodynamic therapy in cancer treatment [J]. Cancer Biol Med, 2016, 13(3): 325-338.
|
38 |
Wu H, Gao X, Luo Y, et al. Targeted delivery of chemo-sonodynamic therapy via brain targeting, glutathione-consumable polymeric nanoparticles for effective brain cancer treatment [J]. Adv Sci (Weinh), 2022, 9(28): e2203894.
|
39 |
Gong F, Cheng L, Yang N, et al. Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy [J]. Nat Commun, 2020, 11(1): 3712.
|
40 |
Liang S, Deng X, Ma P, et al. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy [J]. Adv Mater, 2020, 32(47): e2003214.
|
41 |
Sun S, Tang Q, Wang Y, et al. In situ micro-nano conversion augmented tumor-localized immunochemotherapy [J]. ACS Appl Mater Interfaces, 2022, 14(23): 27013-27027.
|
42 |
Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice [J]. Nat Commun, 2019, 10(1): 2025.
|
43 |
Lu D, Wang L, Wang L, et al. Probiotic engineering and targeted sonoimmuno-therapy augmented by STING agonist [J]. Adv Sci (Weinh), 2022, 9(22): e2201711.
|
44 |
Huang J, Xiao Z, An Y, et al. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy [J]. Biomaterials, 2021, 269: 120636.
|