1 |
Hassabis D, Kumaran D, Summerfield C, et al. Neuroscience-Inspired Artificial Intelligence [J]. Neuron, 2017, 95(2): 245-258.
|
2 |
Hinton G. Deep learning-a technology with the potential to transform health care [J]. JAMA, 2018, 320(11): 1101-1102.
|
3 |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
|
4 |
LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
|
5 |
Li X, Zhang S, Zhang Q, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study [J]. Lancet Oncol, 2019, 20(2): 193-201.
|
6 |
Peng S, Liu Y, Lv W, et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study [J]. Lancet Digit Health, 2021, 3(4): e250-e259.
|
7 |
Buda M, Wildman-Tobriner B, Hoang J, et al. Management of thyroid nodules seen on US images: deep learning may match performance of radiologists [J]. Radiology, 2019, 292(3): 695-701.
|
8 |
Chi J, Walia E, Babyn P, et al. Thyroid nodule classification in ultrasound images by fine-tuning deep convolutional neural network [J]. J Digit Imaging, 2017, 30(4): 477-486.
|
9 |
Jin Z, Zhu Y, Zhang S, et al. Diagnosis of thyroid cancer using a TI-RADS-based computer-aided diagnosis system: a multicenter retrospective study [J]. Clin Imaging, 2021, 80: 43-49.
|
10 |
李盈盈, 李欣洋, 阎琳, 等. S-detect技术辅助住院医师诊断甲状腺影像报告和数据系统4类≤1 cm甲状腺结节的应用价值 [J/OL]. 中华医学超声杂志(电子版), 2022, 19(7): 682-687.
|
11 |
Li J, Bu Y, Lu S, et al. Development of a deep learning-based model for diagnosing breast nodules with ultrasound [J]. J Ultrasound Med, 2021, 40(3): 513-520.
|
12 |
Wang F, Liu X, Yuan N, et al. Study on automatic detection and classification of breast nodule using deep convolutional neural network system [J]. J Thorac Dis, 2020, 12(9): 4690-4701.
|
13 |
王世界, 刘华清, 张建兴, 等. 基于自动乳腺全容积成像影像组学的机器学习模型鉴别BI-RADS 4类病灶良恶性的临床价值 [J]. 中华超声影像学杂志, 2023, 32(2): 136-143.
|
14 |
Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer [J]. Nat Commun, 2020, 11(1): 1236.
|
15 |
Lee JH, Baek JH, Kim JH, et al. Deep learning-based computer-aided diagnosis system for localization and diagnosis of metastatic lymph nodes on ultrasound: a pilot study [J]. Thyroid, 2018, 28(10): 1332-1338.
|
16 |
Zhu Y, Meng Z, Fan X, et al. Deep learning radiomics of dual-modality ultrasound images for hierarchical diagnosis of unexplained cervical lymphadenopathy [J]. BMC Med, 2022, 20(1): 269.
|
17 |
Scheipers U, Siebers S, Gottwald F, et al. Sonohistology for the computerized differentiation of parotid gland tumors [J]. Ultrasound Med Biol, 2005, 31(10): 1287-1296.
|
18 |
Savaş S, Topaloğlu N, Kazcı Ö, et al. Classification of carotid artery intima media thickness ultrasound images with deep learning [J]. J Med Syst, 2019, 43(8): 273.
|
19 |
Saba L, Sanagala SS, Gupta SK, et al. Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system [J]. Int J Cardiovasc Imaging, 2021, 37(5): 1511-1528.
|
20 |
Biswas M, Kuppili V, Saba L, et al. Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk [J]. Med Biol Eng Comput, 2019, 57(2): 543-564.
|
21 |
罗渝昆, 费翔, 吴猛, 等. 远程超声机器人在新型冠状病毒肺炎患者中的应用 [J/OL]. 中华医学超声杂志(电子版), 2020, 17(9): 922.
|
22 |
Seo J, Kim Y, Kim K, et al. Differentiation of the follicular neoplasm on the gray-scale US by image selection subsampling along with the marginal outline using convolutional neural network [J]. Biomed Res Int, 2017, 2017: 3098293.
|
23 |
Li H, Weng J, Shi Y, et al. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images [J]. Sci Rep, 2018, 8(1): 6600.
|
24 |
Kwon MR, Shin JH, Park H, et al. Radiomics study of thyroid ultrasound for predicting BRAF mutation in papillary thyroid carcinoma: preliminary results [J]. AJNR Am J Neuroradiol, 2020, 41(4): 700-705.
|
25 |
Gu J, Zhu J, Qiu Q, et al. Prediction of immunohistochemistry of suspected thyroid nodules by use of machine learning-based radiomics [J]. AJR Am J Roentgenol, 2019, 213(6): 1348-1357.
|
26 |
Lee J, Baek J, Kim J, et al. Deep learning-based computer-aided diagnosis system for localization and diagnosis of metastatic lymph nodes on ultrasound: a pilot study [J]. Thyroid, 2018, 28(10): 1332-1338.
|
27 |
Park VY, Han K, Lee E, et al. Association between radiomics signature and disease-free survival in conventional papillary Thyroid Carcinoma [J]. Sci Rep, 2019, 9(1): 4501.
|
28 |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. Eur J Cancer, 2012, 48(4): 441-446.
|
29 |
Park VY, Lee E, Lee HS, et al. Combining radiomics with ultrasound-based risk stratification systems for thyroid nodules: an approach for improving performance [J]. Eur Radiol, 2021, 31(4): 2405-2413.
|