1 |
Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, et al. Machine learning in fetal cardiology: what to expect [J]. Fetal Diagn Ther, 2020, 47(5): 363-372.
|
2 |
Gómez Montes E, Herraiz I, Mendoza A, et al. Fetal intervention in right outflow tract obstructive disease: selection of candidates and results [J]. Cardiol Res Pract, 2012, 2012: 592403.
|
3 |
American Institute of Ultrasound in Medicine. AIUM practice guideline for the performance of obstetric ultrasound examinations [J]. J Ultrasound Med, 2013, 32(6): 1083-1101.
|
4 |
International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, et al. ISUOG practice guidelines (updated): sonographic screening examination of the fetal heart [J]. Ultrasound Obstet Gynecol, 2013, 41(3): 348-359.
|
5 |
Zhang J, Gajjala S, Agrawal P, et al. Fully automated echocardiogram interpretation in clinical practice [J]. Circulation, 2018, 138(16): 1623-1635.
|
6 |
Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function [J]. Nature, 2020, 580(7802): 252-256.
|
7 |
Ruijsink B, Puyol-Antón E, Oksuz I, et al. Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function [J]. JACC Cardiovasc Imaging, 2020, 13(3): 684-695.
|
8 |
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.
|
9 |
Tokodi M, Shrestha S, Bianco C, et al. Interpatient similarities in cardiac function: a platform for personalized cardiovascular medicine [J]. JACC Cardiovasc Imaging, 2020, 13(5): 1119-1132.
|
10 |
Casaclang-Verzosa G, Shrestha S, Khalil MJ, et al. Network tomography for understanding phenotypic presentations in aortic stenosis [J]. JACC Cardiovasc Imaging, 2019, 12(2): 236-248.
|
11 |
Xu L, Liu M, Shen Z, et al. DW-Net: A cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography [J]. Comput Med Imaging Graph, 2020, 80: 101690.
|
12 |
Bridge CP, Ioannou C, Noble JA. Automated annotation and quantitative description of ultrasound videos of the fetal heart [J]. Med Image Anal, 2017, 36: 147-161.
|
13 |
An S, Lv J, Zhu H, et al. Fetal heart and descending aorta detection in four-chamber view of fetal echocardiography [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 2722-2725.
|
14 |
周小雪, 张莹莹, 何怡华, 等. 人工智能技术在胎儿超声心动图四腔心切面筛查中的应用[J]. 中华超声影像学杂志, 2020, 29(8): 668-672.
|
15 |
Pu B, Zhu N, Li K, et al. Fetal cardiac cycle detection in multi-resource echocardiograms using hybrid classification framework [J]. Future Generation Computer Systems, 2021, 115: 825-836.
|
16 |
Abdi AH, Luong C, Tsang T, et al. Automatic quality assessment of echocardiograms using convolutional neural networks: feasibility on the apical four-chamber view [J]. IEEE Trans Med Imaging, 2017, 36(6): 1221-1230.
|
17 |
Dong J, Liu S, Liao Y, et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes [J]. IEEE J Biomed Health Inform, 2020, 24(4): 931-942.
|
18 |
Salomon LJ, Winer N, Bernard JP, et al. A score-based method for quality control of fetal images at routine second-trimester ultrasound examination [J]. Prenat Diagn, 2008, 28(9): 822-827.
|
19 |
Gong Y, Zhang Y, Zhu H, et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning [J]. IEEE Trans Med Imaging, 2020, 39(4): 1206-1222.
|
20 |
Arnaout R, Curran L, Zhao Y, et al. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease [J]. Nat Med, 2021, 27(5): 882-891.
|