切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (08) : 871 -874. doi: 10.3877/cma.j.issn.1672-6448.2023.08.015

综述

影响声动力疗法抗肿瘤疗效的因素分析
田慧敏, 程文()   
  1. 150081 哈尔滨医科大学附属肿瘤医院超声科
  • 收稿日期:2022-04-07 出版日期:2023-08-01
  • 通信作者: 程文
  • 基金资助:
    国家自然科学基金面上项目(82171947); 黑龙江省自然科学基金重点项目(ZD2021H005)
  • Received:2022-04-07 Published:2023-08-01
引用本文:

田慧敏, 程文. 影响声动力疗法抗肿瘤疗效的因素分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 871-874.

[1]
Costley D, Ewan CMC, Fowley C, et al. Treating cancer with sonodynamic therapy: a review [J]. Int JH, 2015, 31(2): 107-117.
[2]
Mcewan C, Nesbitt H, Nicholas D, et al. Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer [J]. Bioorg Med Chem, 2016, 24(13): 3023-3028.
[3]
Mchale AP, Callan JF, Nomikou N, et al. Sonodynamic therapy: concept, mechanism and application to cancer treatment [J]. Adv Exp Med Biol, 2016, 880: 429-450.
[4]
Yamaguchi T, Kitahara S, Kusuda K, et al. Current landscape of sonodynamic therapy for treating cancer [J]. Cancers, 2021, 13(24): 6184.
[5]
Yumita N, Nishigaki R, Umemura K, et al. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound [J]. Jpn J Cancer Res, 1989, 80(3): 219-222.
[6]
Yumita N, Nishigaki R, Umemura K, et al. Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180 [J]. Jpn J Cancer Res, 1990, 81(3): 304-308.
[7]
Umemura S, Yumita N, Nishigaki R. Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70 [J]. Jpn J Cancer Res, 1993, 84(5): 582-588.
[8]
Kim G, Wu Q, Chu J L, et al. Ultrasound controlled mechanophore activation in hydrogels for cancer therapy [J]. Proc Natl Acad Sci U S A, 2022, 119(4): e2109791119.
[9]
Jiang Q, Qiao B, Lin X, et al. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy [J]. Theranostics, 2022, 12(1): 59-75.
[10]
Lafond M, Yoshizawa S, Umemura SI. Sonodynamic therapy: advances and challenges in clinical translation [J]. J Ultrasound Med, 2019, 38(3): 567-580.
[11]
Li E, Sun Y, Lv G, et al. Sinoporphyrin sodium based sonodynamic therapy induces anti-tumor effects in hepatocellular carcinoma and activates p53/caspase 3 axis [J]. Int J Biochem Cell Biol, 2019, 113: 104-114.
[12]
Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice [J]. Nat Commun, 2019, 10(1): 2025.
[13]
Qin J, Wang TY, Willmann JK. Sonoporation: applications for cancer therapy [J]. Adv Exp Med Biol, 2016, 880: 263-291.
[14]
Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy--a review of the synergistic effects of drugs and ultrasound [J]. Ultrason Sonochem, 2004, 11(6): 349-363.
[15]
Beguin E, Shrivastava S, Dezhkunov NV, et al. Direct evidence of multibubble sonoluminescence using therapeutic ultrasound and microbubbles [J]. ACS Appl Mater Interfaces, 2019, 11(22): 19913-19919.
[16]
Wan GY, Liu Y, Chen BW, et al. Recent advances of sonodynamic therapy in cancer treatment [J]. Cancer Biol Med, 2016, 13(3): 325-338.
[17]
Xu HN, Chen HJ, Zheng BY, et al. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate [J]. Ultrason Sonochem, 2015, 22: 125-131.
[18]
Xu H, Sun X, Yao J, et al. The decomposition of protoporphyrin IX by ultrasound is dependent on the generation of hydroxyl radicals [J]. Ultrason Sonochem, 2015, 27: 623-630.
[19]
Nene LC, Sindelo A, Britton J, et al. Effect of ultrasonic frequency and power on the sonodynamic therapy activity of cationic Zn(II) phthalocyanines [J]. J Inorg Biochem, 2021, 217: 111397.
[20]
Polat BE, Hart D, Langer R, et al. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends [J]. J Control Release, 2011, 152(3): 330-348.
[21]
林建光, 张为民, 王晓怀, 等. 声敏剂Sonoflora介导的声动力治疗小鼠S180肉瘤的实验研究 [J]. 临床肿瘤学杂志, 2013, 18(4): 300-304.
[22]
Logan K, Foglietta F, Nesbitt H, et al. Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel, doxorubicin and Rose Bengal [J]. Eur J Pharm Biopharm, 2019, 139: 224-231.
[23]
Yoshida M, Kobayashi H, Terasaka S, et al. Sonodynamic therapy for malignant glioma using 220-kHz transcranial magnetic resonance imaging-guided focused ultrasound and 5-aminolevulinic acid [J]. Ultrasound Med Biol, 2019, 45(2): 526-538.
[24]
Zhang P, Ren Z, Chen Z, et al. Iron oxide nanoparticles as nanocarriers to improve chlorin e6-based sonosensitivity in sonodynamic therapy [J]. Drug Des Devel Ther, 2018, 12: 4207-4216.
[25]
Zhang Q, Bao C, Cai X, et al. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment [J]. Cancer Sci, 2018, 109(5): 1330-1345.
[26]
陈梦杰, 周军, 万倩, 等. 白蛋白纳米声敏剂体外声动力治疗脑胶质瘤的实验研究 [J].中国超声医学杂志, 2018, 34(10): 939-942.
[27]
Hao D, Song Y, Che Z, et al. Calcium overload and in vitro apoptosis of the C6 glioma cells mediated by sonodynamic therapy (hematoporphyrin monomethyl ether and ultrasound) [J]. Cell Biochem Biophys, 2014, 70(2): 1445-1452.
[28]
Xu ZY, Wang K, Li XQ, et al. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells [J]. Ultrasonics, 2013, 53(1): 232-238.
[29]
Gong F, Cheng L, Yang N, et al. Preparation of TiH(1.924) nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy [J]. Nat Commun, 2020, 11(1): 3712.
[30]
Tao N, Li H, Deng L, et al. A cascade nanozyme with amplified sonodynamic therapeutic effects through comodulation of hypoxia and immunosuppression against cancer [J]. ACS Nano, 2022, 16(1): 485-501.
[31]
Bai S, Lu Z, Jiang Y, et al. Nanotransferrin-based programmable catalysis mediates three-pronged induction of oxidative stress to enhance cancer immunotherapy [J]. ACS Nano, 2022, 16(1): 997-1012.
[32]
Gong F, Cheng L, Yang N, et al. Ultrasmall oxygen-deficient bimetallic oxide MnWO(X) nanoparticles for depletion of endogenous GSH and enhanced sonodynamic cancer therapy [J]. Adv Mater, 2019, 31(23): e1900730.
[33]
Gong F, Cheng L, Yang N, et al. Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy [J]. Nat Commun, 2020, 11(1): 3712.
[34]
Wang X, Yan F, Liu X, et al. Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins [J]. J Control Release, 2018, 286: 358-368.
[35]
Moosavi Nejad S, Takahashi H, Hosseini H, et al. Acute effects of sono-activated photocatalytic titanium dioxide nanoparticles on oral squamous cell carcinoma [J]. Ultrason Sonochem, 2016, 32: 95-101.
[36]
Takemae K, Okamoto J, Horise Y, et al. Function of epirubicin-conjugated polymeric micelles in sonodynamic therapy [J]. Front Pharmacol, 2019, 10: 546.
[37]
Jia Y, Wang X, Liu Q, et al. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway [J]. Ultrasonics, 2017, 73: 154-161.
[38]
Osaki T, Ono M, Uto Y, et al. Sonodynamic therapy using 5-aminolevulinic acid enhances the efficacy of bleomycin [J]. Ultrasonics, 2016, 67: 76-84.
[39]
Lv Y, Fang M, Zheng J, et al. Low-intensity ultrasound combined with 5-aminolevulinic acid administration in the treatment of human tongue squamous carcinoma [J]. Cell Physiol Biochem, 2012, 30(2): 321-333.
[40]
Si Y, Yue J, Liu Z, et al. Phase-transformation nanoparticle-mediated sonodynamic therapy: an effective modality to enhance anti-tumor immune response by inducing immunogenic cell death in breast cancer [J]. Int J Nanomedicine, 2021, 16: 1913-1926.
[41]
Dai S, Hu S, Wu C. Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro [J]. Acta Neurochir (Wien), 2009, 151(12): 1655-1661.
[42]
Chen Z, Li J, Song X, et al. Use of a novel sonosensitizer in sonodynamic therapy of U251 glioma cells in vitro [J]. Exp Ther Med, 2012, 3(2): 273-278.
[43]
Sazgarnia A, Shanei A, Meibodi N T, et al. A novel nanosonosensitizer for sonodynamic therapy: in vivo study on a colon tumor model [J]. J Ultrasound Med, 2011, 30(10): 1321-1329.
[44]
Wang X, Zhong X, Bai L, et al. Ultrafine titanium monoxide (TiO(1+x)) nanorods for enhanced sonodynamic therapy [J]. J Am Chem Soc, 2020, 142(14): 6527-6537.
[45]
Huang P, Qian X, Chen Y, et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy [J]. J Am Chem Soc, 2017, 139(3): 1275-1284.
[46]
Zhang Y, Zhang X, Yang H, et al. Advanced biotechnology-assisted precise sonodynamic therapy [J]. Chem Soc Rev, 2021, 50(20): 11227-11248.
[47]
Wu W, Pu Y, Lin H, et al. Starvation-sensitized and oxygenation-promoted tumor sonodynamic therapy by a cascade enzymatic approach [J]. Research (Wash DC), 2021, 2021: 9769867.
[48]
Xu Q, Zhan G, Zhang Z, et al. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors [J]. Theranostics, 2021, 11(4): 1937-1952.
[49]
Nomikou N, Fowley C, Byrne NM, et al. Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy [J]. Chem Commun (Camb), 2012, 48(67): 8332-8334.
No related articles found!
阅读次数
全文


摘要