1 |
Sengupta PP, Marwick TH. The many dimensions of diastolic function: a curse or a blessing [J]. JACC Cardiovasc Imaging, 2018, 11(3): 409-410.
|
2 |
Playford D, Strange G, Celermajer DS, et al. Diastolic dysfunction and mortality in 436 360 men and women: the National Echo Database Australia (NEDA) [J]. Eur Heart J Cardiovasc Imaging, 2021, 22(5): 505-515.
|
3 |
Kane GC, Karon BL, Mahoney DW, et al. Progression of left ventricular diastolic dysfunction and risk of heart failure [J]. JAMA, 2011, 306(8): 856-863.
|
4 |
Kusunose K, Haga A, Abe T, et al. Utilization of artificial intelligence in echocardiography [J]. Circ, 2019, 83(8): 1623-1629.
|
5 |
Nauta JF, Hummel YM, Van Der Meer P, et al. Correlation with invasive left ventricular filling pressures and prognostic relevance of the echocardioimagedata diastolic parameters used in the 2016 ESC heart failure guidelines and in the 2016 ASE/EACVI recommendations: a systematic review in patients with heart failure with preserved ejection fraction [J]. Eur J Heart Fai, 2018, 20(9): 1303-1311.
|
6 |
Jones R, Varian F, Alabed S, et al. Meta-analysis of echocardioimagedata quantification of left ventricular filling pressure [J]. ESC Heart Fail, 2021, 8(1): 566-576.
|
7 |
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J]. J Am Soc Echocardiogr, 2016, 29(4): 277-314.
|
8 |
Almeida JG, Fontes-Carvalho R, Sampaio F, et al. Impact of the 2016 ASE/EACVI recommendations on the prevalence of diastolic dysfunction in general population [J]. Eur Heart J Cardiovasc Imaging, 2018, 19(4): 380-386.
|
9 |
Sanchis L, Andrea R, Falces C, et al. Differential clinical implications of current recommendations for the evaluation of left ventricular diastolic function by echocardiography [J]. J Am Soc Echocardiogr, 2018, 31(11): 1203-1208.
|
10 |
Othman F, Abushahba G, Salustri A. Adherence to the American Society of Echocardiography and European Association of Cardiovascular Imaging Recommendations for the evaluation of left ventricular diastolic function by echocardiography: a quality improvement project [J]. J Am Soc Echocardiogr, 2019, 32(12): 1619-1621.
|
11 |
Playford D, Strange G, Celermajer DS, et al. Diastolic dysfunction and mortality in 436 360 men and women: the National Echo Database Australia (NEDA) [J]. Eur Heart J Cardiovasc Imaging, 2020, 22(5): 505-515.
|
12 |
Gottbrecht M, Salerno M, Aurigemma G. Evolution of diastolic function algorithms: implications for clinical practice [J]. Echocardiography, 2018, 35(1): 39-46.
|
13 |
Zakeri R, Chamberlain AM, Roger VL, et al. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction [J]. Circ, 2013, 128(10): 1085-1093.
|
14 |
Ma G, Fang L, Gao P, et al. Association between the ratio of early diastolic transmitral velocity to early diastolic mitral annular velocity and invasive measured left atrial pressure in patients with atrial fibrillation and preserved left ventricular ejection fraction [J]. Chinese Journal of Cardiology, 2018, 46(4): 292-297.
|
15 |
Alsharqi M, Woodward WJ, Mumith JA, et al. Artificial intelligence and echocardiography [J]. Echo Res Pract, 2018, 5(4): R115-R125.
|
16 |
Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning [J]. NPJ Digital Med, 2018, 1: 6.
|
17 |
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardioimagedata images [J]. JACC Cardiovasc Imaging, 2020, 13(2 Pt 1): 374-381.
|
18 |
Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms [J]. NPJ Digit Med, 2020, 3: 10.
|
19 |
Choi DJ, Park JJ, Ali T, et al. Artificial intelligence for the diagnosis of heart failure [J]. NPJ Digit Med, 2020, 3: 54.
|
20 |
Sengupta PP, Huang Y-M, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging [J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330.
|
21 |
Hubert A, Le Rolle V, Galli E, et al. New expectations for diastolic function assessment in transthoracic echocardiography based on a semi-automated computing of strain–volume loops [J]. Eur Heart J Cardiovasc Imaging, 2020, 21(12): 1366-1371.
|
22 |
Nouraei H, Rabkin SW. A new approach to the clinical subclassification of heart failure with preserved ejection fraction [J]. Int J Cardiol, 2021, 331: 138-143.
|
23 |
Segar MW, Patel KV, Ayers C, et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis [J]. Eur J Heart Fail, 2020, 22(1): 148-158.
|
24 |
Horiuchi Y, Tanimoto S, Latif A, et al. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables [J]. Int J Cardiol, 2018, 262: 57-63.
|
25 |
Mishra RK, Tison GH, Fang Q, et al. Association of machine learning-derived phenogroupings of echocardioimagedata variables with heart failure in stable coronary artery disease: the heart and soul study [J]. J Am Soc Echocardiogr, 2020, 33(3): 322-331.
|
26 |
Pecková M, Charvat J, Schuck O, et al. The association between left ventricular diastolic function and a mild-to-moderate decrease in glomerular filtration rate in patients with type 2 diabetes mellitus [J]. J Int Med Res, 2011, 39(6): 2178-2186.
|
27 |
Omar AMS, Narula S, Abdel Rahman MA, et al. Precision phenotyping in heart failure and pattern clustering of ultrasound data for the assessment of diastolic dysfunction [J]. JACC Cardiovasc Imaging, 2017, 10(11): 1291-1303.
|
28 |
Pandey A, Kagiyama N, Yanamala N, et al. Deep-learning models for the echocardioimagedata assessment of diastolic dysfunction [J]. JACC Cardiovasc Imaging, 2021, 14(10): 1887-1900.
|
29 |
Lancaster MC, Salem Omar AM, Narula S, et al. Phenotypic clustering of left ventricular diastolic function parameters [J]. JACC Cardiovasc Imaging, 2019, 12(7 Pt 1): 1149-1161.
|