切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (10) : 1099 -1102. doi: 10.3877/cma.j.issn.1672-6448.2023.10.017

综述

剪切波弹性成像在肩袖撕裂诊疗中的应用进展
张岩岩, 朱好辉()   
  1. 453000 新乡医学院;450003 郑州,河南省人民医院超声科
    450003 郑州,河南省人民医院超声科
  • 收稿日期:2023-02-27 出版日期:2023-10-01
  • 通信作者: 朱好辉
  • 基金资助:
    河南省卫生健康中青年学科带头人培育项目

Application of shear-wave elastography in diagnosis and treatment of rotator cuff tear

Yanyan Zhang, Haohui Zhu()   

  • Received:2023-02-27 Published:2023-10-01
  • Corresponding author: Haohui Zhu
引用本文:

张岩岩, 朱好辉. 剪切波弹性成像在肩袖撕裂诊疗中的应用进展[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1099-1102.

Yanyan Zhang, Haohui Zhu. Application of shear-wave elastography in diagnosis and treatment of rotator cuff tear[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(10): 1099-1102.

肩关节是人体最复杂的关节复合体,其中肩袖是维持肩关节稳定性最为重要的解剖结构,由肩胛下肌、冈上肌、冈下肌和小圆肌组成。肩袖撕裂是引起慢性肩痛及肩关节功能障碍的常见原因,其发病率为20.7%~22.1%,且随着年龄增长而升高,其中冈上肌腱撕裂占90%以上。早期准确识别肩袖撕裂对临床诊治及改善患者预后具有重要意义。超声检查因具有简便、经济且能够实时动态成像等优点在肩袖撕裂诊断方面应用广泛,常规二维超声及多普勒超声可探查肩袖结构回声强度、厚度等形态学改变及血流变化情况,而剪切波弹性成像(shear wave elastography,SWE)作为一种评估组织硬度的新型超声诊断技术,可无创定量提供组织的力学特征信息,近年来已逐渐应用于肌肉骨骼系统。许多研究者发现SWE在肩袖撕裂术前评估及预后随访方面具有一定的应用价值。本文就SWE在肩袖撕裂中的应用进展做一综述。

1
韩增帅, 张益, 丁磊, 等. 肩袖撕裂的相关危险因素分析及预测效能评估 [J]. 中华创伤杂志, 2022, 38(3): 213-219.
2
Nyffeler RW, Schenk N, Bissig P. Can a simple fall cause a rotator cuff tear? Literature review and biomechanical considerations [J]. Int Orthop, 2021, 45(6): 1573-1582.
3
朱家安. 弹性成像在肌骨超声中的应用 [J]. 临床超声医学杂志, 2021, 23(7): 481-482.
4
Lin DJ, Burke CJ, Abiri B, et al. Supraspinatus muscle shear wave elastography (SWE): detection of biomechanical differences with varying tendon quality prior to gray-scale morphologic changes [J]. Skeletal Radiol, 2020, 49(5): 731-738.
5
米亚儒, 邓荷萍, 陆博, 等. 超声成像新技术在诊断肩袖撕裂中的应用进展 [J]. 中华超声影像学杂志, 2020, 29(5): 458-461.
6
Jeong JY, Khil EK, Kim AY, et al. Utility of Preoperative shear-wave elastography of the supraspinatus muscle for predicting successful rotator cuff repair: a prospective observational study with MRI correlation [J]. AJR Am J Roentgenol, 2022, 218(6): 1051-1060.
7
Ophir J, Cespedes I, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissues [J]. Ultrason Imaging, 1991, 13(2): 111-134.
8
Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics [J]. Ultrasound Med Biol, 1998, 24(9): 1419-1435.
9
Sigrist RMS, Liau J, Kaffas AE, et al. Ultrasound elastography: review of techniques and clinical applications [J]. Theranostics, 2017, 7(5): 1303-1329.
10
Hackett L, Aveledo R, Lam PH, et al. Reliability of shear wave elastography ultrasound to assess the supraspinatus tendon: An intra and inter-rater in vivo study [J]. Shoulder Elbow, 2020, 12(1): 18-23.
11
Cortez CD, Hermitte L, Ramain A, et al. Ultrasound shear wave velocity in skeletal muscle: A reproducibility study [J]. Diagn Interv Imaging, 2016, 97(1): 71-79.
12
Davis LC, Baumer TG, Bey MJ, et al. Clinical utilization of shear wave elastography in the musculoskeletal system [J]. Ultrasonography, 2019, 38(1): 2-12.
13
Shin HJ, Kim MJ, Kim HY, et al. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: a phantom study [J]. Eur radiol, 2016, 26(10): 3361-3367.
14
Ewertsen C, Carlsen JF, Christiansen IR, et al. Evaluation of healthy muscle tissue by strain and shear wave elastography–Dependency on depth and ROI position in relation to underlying bone [J]. Ultrasonics, 2016, 71: 127-133.
15
李健明, 胡向东, 张岩峰, 等. 剪切波弹性成像的影响因素分析[J/CD]. 中华医学超声杂志(电子版), 2019, 16(8): 565-567.
16
Meyer DC, Lajtai G, von Rechenberg B, et al. Tendon retracts more than muscle in experimental chronic tears of the rotator cuff [J]. J Bone Joint Surg Br, 2006, 88(11): 1533-1538.
17
Itoigawa Y, Maruyama Y, Kawasaki T, et al. Shear wave elastography can predict passive stiffness of supraspinatus musculotendinous unit during arthroscopic rotator cuff repair for presurgical planning [J]. Arthroscopy, 2018, 34(8): 2276-2284.
18
Hou SW, Merkle AN, Babb JS, et al. Shear wave ultrasound elastoimagedata evaluation of the rotator cuff tendon [J]. J Ultrasound Med, 2017, 36(1): 95-106.
19
Rosskopf AB, Ehrmann C, Buck FM, et al. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality [J]. Radiology, 2016, 278(2): 465-474.
20
Martins-Bach AB, Bachasson D, Araujo ECA, et al. Non-invasive assessment of skeletal muscle fibrosis in mice using nuclear magnetic resonance imaging and ultrasound shear wave elastography [J]. Sci Rep, 2021, 11(1): 284.
21
Deng H, Mi Y, Lu B, et al. Application of virtual touch tissue imaging quantification in diagnosis of supraspinatus tendon injury [J]. J Xray Sci Technol, 2021, 29(5): 881-890.
22
Yoo SJ, Lee S, Song Y, et al. Elasticity of torn supraspinatus tendons measured by shear wave elastography: a potential surrogate marker of chronicity? [J]. Ultrasonography, 2020, 39(2): 144-151.
23
Huang J, Jiang L, Wang J, et al. Ultrasound shear wave elastography-derived tissue stiffness is positively correlated with rotator cuff tear size and muscular degeneration [J]. Knee Surg Sports Traumatol Arthrosc, 2022, 30(7): 2492-2499.
24
Giambini H, Hatta T, Rezaei A, et al. Extensibility of the supraspinatus muscle can be predicted by combining shear wave elastography and magnetic resonance imaging-measured quantitative metrics of stiffness and volumetric fat infiltration: A cadaveric study [J]. Clin Biomech (Bristol, Avon), 2018, 57: 144-149.
25
Krepkin K, Bruno M, Raya JG, et al. Quantitative assessment of the supraspinatus tendon on MRI using T2/T2* mapping and shear-wave ultrasound elastography: a pilot study [J]. Skeletal Radiol, 2017, 46(2): 191-199.
26
Sollmann N, Weidlich D, Klupp E, et al. T2 mapping of the distal sciatic nerve in healthy subjects and patients suffering from lumbar disc herniation with nerve compression [J]. MAGMA, 2020, 33(5): 713-724.
27
Lawrence RL, Ruder MC, Moutzouros V, et al. Ultrasound shear wave elastography and its association with rotator cuff tear characteristics [J]. JSES Int, 2021, 5(3): 500-506.
28
Yuri T, Mura N, Yuki I, et al. Contractile property measurement of the torn supraspinatus muscle using real-time tissue elastography [J]. J Shoulder Elbow Surg, 2018, 27(9): 1700-1704.
29
Silldorff MD, Choo AD, Choi AJ, et al. Effect of supraspinatus tendon injury on supraspinatus and infraspinatus muscle passive tension and associated biochemistry [J]. J Bone Joint Surg Am, 2014, 96(20): e175.
30
Green CK, Scanaliato JP, Dunn JC, et al. Rates of return to manual labor after arthroscopic rotator cuff repair [J]. Am J Sports Med, 2022, 50(8): 2227-2233.
31
Shim SB, Jeong JY, Kim JS, et al. Evaluation of risk factors for irreparable rotator cuff tear in patients older than age 70 including evaluation of radiologic factors of the shoulder [J]. J Shoulder Elbow Surg, 2018, 27(11): 1932-1938.
32
Valencia AP, Lai JK, Iyer SR, et al. Fatty infiltration is a prognostic marker of muscle function after rotator cuff tear [J]. Am J Sports Med, 2018, 46(9): 2161-2169.
33
Sakaki Y, Taniguchi K, Katayose M, et al. Effects of shoulder abduction on the stiffness of supraspinatus muscle regions in rotator cuff tear [J]. Clin Anat, 2022, 35(1): 94-102.
34
Kim S, Bleakney R, Boynton E, et al. Investigation of the static and dynamic musculotendinous architecture of supraspinatus [J]. Clin Anat, 2010, 23(1): 48-55.
35
Kim SY, Boynton EL, Ravichandiran K, et al. Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations [J]. Clin Anat, 2007, 20(6): 648-655.
36
Meyer DC, Pirkl C, Pfirrmann CW, et al. Asymmetric atrophy of the supraspinatus muscle following tendon tear [J]. J Orthop Res, 2005, 23(2): 254-258.
37
Griffith KM, Hammer LC, Iannuzzi NP, et al. Review of human supraspinatus tendon mechanics. Part II: tendon healing response and characterization of tendon health [J]. J Shoulder Elbow Surg, 2022, 31(12): 2678-2682.
38
Nocera NL, Burke CJ, Gyftopoulos S, et al. Ultrasound-MRI correlation for healing of rotator cuff repairs using power Doppler, sonoimagedata shear wave elastography and MR signal characteristics: a pilot study [J]. J Ultrasound Med, 2021, 40(10): 2055-2068.
39
Carr AJ, Cooper CD, Campbell MK, et al. Clinical effectiveness and cost-effectiveness of open and arthroscopic rotator cuff repair [the UK Rotator Cuff Surgery (UKUFF) randomised trial] [J]. Health Technol Assess, 2015, 19(80): 1-218.
40
Le BT, Wu XL, Lam PH, et al. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs [J]. Am J Sports Med, 2014, 42(5): 1134-1142.
41
Itoigawa Y, Wada T, Kawasaki T, et al. Supraspinatus muscle and tendon stiffness changes after arthroscopic rotator cuff repair: a shear wave elastography assessment [J]. J Orthop Res, 2020, 38(1): 219-227.
42
Ruder MC, Lawrence RL, Soliman SB, et al. Presurgical tear characteristics and estimated shear modulus as predictors of repair integrity and shoulder function one year after rotator cuff repair [J]. JSES Int, 2022, 6(1): 62-69.
No related articles found!
阅读次数
全文


摘要