1 |
Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview [J]. Cells, 2021, 10(11): 2857.
|
2 |
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis [J]. Lancet, 2016, 388(10055): 2023-2038.
|
3 |
Sparks JA. Rheumatoid arthritis [J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16.
|
4 |
Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative [J]. Ann Rheum Dis, 2010, 69(9):1580-1588.
|
5 |
Sakellariou G, Scirè CA, Verstappen SM, et al. In patients with early rheumatoid arthritis, the new ACR/EULAR definition of remission identifies patients with persistent absence of functional disability and suppression of ultrasonoimagedata synovitis [J]. Ann Rheum Dis, 2013, 72(2): 245-249.
|
6 |
Caporali R, Smolen JS. Back to the future: forget ultrasound and focus on clinical assessment in rheumatoid arthritis management [J]. Ann Rheum Dis, 2018, 77(1): 18-20.
|
7 |
Filippucci E, Cipolletta E, Mashadi Mirza R, et al. Ultrasound imaging in rheumatoid arthritis [J]. Radiol Med, 2019, 124(11): 1087-1100.
|
8 |
D'Agostino MA, Terslev L, Aegerter P, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-Part 1: definition and development of a standardised, consensus-based scoring system [J]. RMD Open, 2017, 3(1): e000428.
|
9 |
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine [J]. Gastrointest Endosc, 2020, 92(4): 807-812.
|
10 |
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
|
11 |
Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4.
|
12 |
Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: A technology review [J]. Phys Med, 2021, 83: 242-256.
|
13 |
Shen YT, Chen L, Yue WW, et al. Artificial intelligence in ultrasound [J]. Eur J Radiol, 2021, 139: 109717.
|
14 |
Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound [J]. Neurology, 2010, 75(6): 526-531.
|
15 |
Jansen M, van Alfen N, Nijhuis van der Sanden MW, et al. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy [J]. Neuromuscul Disord, 2012, 22(4): 306-317.
|
16 |
Shin Y, Yang J, Lee YH, et al. Artificial intelligence in musculoskeletal ultrasound imaging [J]. Ultrasonography, 2021, 40(1): 30-44.
|
17 |
Faeghi F, Ardakani AA, Acharya UR, et al. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: A comparison with radiologists' assessment [J]. Eur J Radiol, 2021, 136: 109518.
|
18 |
Yu S, Tan KK, Sng BL, et al. Feature extraction and classification for ultrasound images of lumbar spine with support vector machine [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 4659-4662.
|
19 |
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey [J]. Biomed Res Int, 2018, 2018: 5137904.
|
20 |
Smerilli G, Cipolletta E, Sartini G, et al. Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound images acquired at carpal tunnel level [J]. Arthritis Res Ther, 2022, 24(1): 38.
|
21 |
Tang S, Yang X, Shajudeen P, et al. A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo [J]. Med Image Anal, 2021,74: 102221.
|
22 |
Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis [J]. Nat Rev Rheumatol, 2021, 17(1): 17-33.
|
23 |
Veronese E, Stramare R, Campion A, et al. Improved detection of synovial boundaries in ultrasound examination by using a cascade of active-contours [J]. Med Eng Phys, 2013, 35(2): 188-194.
|
24 |
Cao K, Mills DM, Thiele RG, et al. Toward quantitative assessment of rheumatoid arthritis using volumetric ultrasound [J]. IEEE Trans Biomed Eng, 2016, 63(2): 449-458.
|
25 |
Cupek R, Ziębiński A. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods [J]. Reumatologia, 2016, 54(5): 239-242.
|
26 |
Szkudlarek M, Court-Payen M, Jacobsen S, et al. Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis [J]. Arthritis Rheum, 2003, 48(4): 955-962.
|
27 |
Mielnik P, Fojcik M, Segen J, et al. A novel method of synovitis stratification in ultrasound using machine learning algorithms: results from clinical validation of the MEDUSA project [J]. Ultrasound Med Biol, 2018, 44(2): 489-494.
|
28 |
Andersen JKH, Pedersen JS, Laursen MS, et al. Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J]. RMD Open, 2019, 5(1): e000891.
|
29 |
Christensen ABH, Just SA, Andersen JKH, et al. Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients [J]. Ann Rheum Dis, 2020, 79(9): 1189-1193.
|
30 |
Zhou Z, Zhao C, Qiao H, et al. RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning [J]. Patterns (N Y), 2022, 3(10): 100592.
|
31 |
Stoel B. Use of artificial intelligence in imaging in rheumatology - current status and future perspectives [J]. RMD Open, 2020, 6(1): e001063.
|
32 |
Cipolletta E, Fiorentino MC, Moccia S, et al. Artificial intelligence for ultrasound informative image selection of metacarpal head cartilage.A Pilot Study[J]. Front Med (Lausanne), 2021, 8: 589197.
|
33 |
Fiorentino MC, Cipolletta E, Filippucci E, et al. A deep-learning framework for metacarpal-head cartilage-thickness estimation in ultrasound rheumatological images [J]. Comput Biol Med, 2022, 141: 105117.
|