切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (12) : 1300 -1303. doi: 10.3877/cma.j.issn.1672-6448.2023.12.014

综述

人工智能在类风湿关节炎肌骨超声成像中的应用研究进展
李雪兰1, 王铭1, 赵辰阳2, 姜玉新1, 杨萌1,()   
  1. 1. 100730 北京,中国医学科学院北京协和医学院 北京协和医院超声医学科 疑难重症及罕见病国家重点实验室
    2. 518035 深圳,北京大学深圳医院超声影像科
  • 收稿日期:2023-02-01 出版日期:2023-12-01
  • 通信作者: 杨萌
  • 基金资助:
    北京协和医院中央高水平医院临床科研专项(2022-PUMCH-C-009); 国家自然科学基金面上项目(61971447)

Progress in application of artificial intelligence in musculoskeletal ultrasound imaging in rheumatoid arthritis

Xuelan Li, Ming Wang, Chenyang Zhao   

  • Received:2023-02-01 Published:2023-12-01
引用本文:

李雪兰, 王铭, 赵辰阳, 姜玉新, 杨萌. 人工智能在类风湿关节炎肌骨超声成像中的应用研究进展[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1300-1303.

Xuelan Li, Ming Wang, Chenyang Zhao. Progress in application of artificial intelligence in musculoskeletal ultrasound imaging in rheumatoid arthritis[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(12): 1300-1303.

类风湿关节炎(rheumatoid arthritis,RA)是以滑膜炎症、软骨及骨破坏为特征的慢性自身免疫性疾病,全球发病率为0.5%~1.0%。RA起病隐匿,并呈波动性进展,临床不可治愈,如控制不佳,将导致不可逆性关节、器官损伤及功能障碍,因此如何实现早期诊断和治疗以控制炎症、减少和预防并发症至关重要。2010年美国风湿病学会(American College of Rheumatology,ACR)/欧洲抗风湿病联盟(European League Against Rheumatism,EULAR)制定了RA新分类标准,即以临床症状及体征、实验室检查和影像学检查等进行综合评估。肌骨超声对滑膜炎、腱鞘炎、软骨及骨损伤等RA基本病变检测的敏感度高,且在RA随访监测、预后评估方面均具有潜在优势,已成为RA辅助诊断常规影像学手段。然而,肌骨超声在操作者依赖性、重复性、精准量化评估等方面存在局限性,标准化超声评分在反映RA疾病活动度变化方面存在延迟,导致其对RA诊疗有效性信息的反馈能力仍无法满足临床需求。

1
Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview [J]. Cells, 2021, 10(11): 2857.
2
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis [J]. Lancet, 2016, 388(10055): 2023-2038.
3
Sparks JA. Rheumatoid arthritis [J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16.
4
Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative [J]. Ann Rheum Dis, 2010, 69(9):1580-1588.
5
Sakellariou G, Scirè CA, Verstappen SM, et al. In patients with early rheumatoid arthritis, the new ACR/EULAR definition of remission identifies patients with persistent absence of functional disability and suppression of ultrasonoimagedata synovitis [J]. Ann Rheum Dis, 2013, 72(2): 245-249.
6
Caporali R, Smolen JS. Back to the future: forget ultrasound and focus on clinical assessment in rheumatoid arthritis management [J]. Ann Rheum Dis, 2018, 77(1): 18-20.
7
Filippucci E, Cipolletta E, Mashadi Mirza R, et al. Ultrasound imaging in rheumatoid arthritis [J]. Radiol Med, 2019, 124(11): 1087-1100.
8
D'Agostino MA, Terslev L, Aegerter P, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-Part 1: definition and development of a standardised, consensus-based scoring system [J]. RMD Open, 2017, 3(1): e000428.
9
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine [J]. Gastrointest Endosc, 2020, 92(4): 807-812.
10
Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510.
11
Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4.
12
Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: A technology review [J]. Phys Med, 2021, 83: 242-256.
13
Shen YT, Chen L, Yue WW, et al. Artificial intelligence in ultrasound [J]. Eur J Radiol, 2021, 139: 109717.
14
Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound [J]. Neurology, 2010, 75(6): 526-531.
15
Jansen M, van Alfen N, Nijhuis van der Sanden MW, et al. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy [J]. Neuromuscul Disord, 2012, 22(4): 306-317.
16
Shin Y, Yang J, Lee YH, et al. Artificial intelligence in musculoskeletal ultrasound imaging [J]. Ultrasonography, 2021, 40(1): 30-44.
17
Faeghi F, Ardakani AA, Acharya UR, et al. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: A comparison with radiologists' assessment [J]. Eur J Radiol, 2021, 136: 109518.
18
Yu S, Tan KK, Sng BL, et al. Feature extraction and classification for ultrasound images of lumbar spine with support vector machine [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 4659-4662.
19
Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey [J]. Biomed Res Int, 2018, 2018: 5137904.
20
Smerilli G, Cipolletta E, Sartini G, et al. Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound images acquired at carpal tunnel level [J]. Arthritis Res Ther, 2022, 24(1): 38.
21
Tang S, Yang X, Shajudeen P, et al. A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo [J]. Med Image Anal, 2021,74: 102221.
22
Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis [J]. Nat Rev Rheumatol, 2021, 17(1): 17-33.
23
Veronese E, Stramare R, Campion A, et al. Improved detection of synovial boundaries in ultrasound examination by using a cascade of active-contours [J]. Med Eng Phys, 2013, 35(2): 188-194.
24
Cao K, Mills DM, Thiele RG, et al. Toward quantitative assessment of rheumatoid arthritis using volumetric ultrasound [J]. IEEE Trans Biomed Eng, 2016, 63(2): 449-458.
25
Cupek R, Ziębiński A. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods [J]. Reumatologia, 2016, 54(5): 239-242.
26
Szkudlarek M, Court-Payen M, Jacobsen S, et al. Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis [J]. Arthritis Rheum, 2003, 48(4): 955-962.
27
Mielnik P, Fojcik M, Segen J, et al. A novel method of synovitis stratification in ultrasound using machine learning algorithms: results from clinical validation of the MEDUSA project [J]. Ultrasound Med Biol, 2018, 44(2): 489-494.
28
Andersen JKH, Pedersen JS, Laursen MS, et al. Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J]. RMD Open, 2019, 5(1): e000891.
29
Christensen ABH, Just SA, Andersen JKH, et al. Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients [J]. Ann Rheum Dis, 2020, 79(9): 1189-1193.
30
Zhou Z, Zhao C, Qiao H, et al. RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning [J]. Patterns (N Y), 2022, 3(10): 100592.
31
Stoel B. Use of artificial intelligence in imaging in rheumatology - current status and future perspectives [J]. RMD Open, 2020, 6(1): e001063.
32
Cipolletta E, Fiorentino MC, Moccia S, et al. Artificial intelligence for ultrasound informative image selection of metacarpal head cartilage.A Pilot Study[J]. Front Med (Lausanne), 2021, 8: 589197.
33
Fiorentino MC, Cipolletta E, Filippucci E, et al. A deep-learning framework for metacarpal-head cartilage-thickness estimation in ultrasound rheumatological images [J]. Comput Biol Med, 2022, 141: 105117.
No related articles found!
阅读次数
全文


摘要