| 1 | Radu AF, Bungau SG. Management of rheumatoid arthritis: an overview [J]. Cells, 2021, 10(11): 2857. | 
																													
																						| 2 | Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis [J]. Lancet, 2016, 388(10055): 2023-2038. | 
																													
																						| 3 | Sparks JA. Rheumatoid arthritis [J]. Ann Intern Med, 2019, 170(1): ITC1-ITC16. | 
																													
																						| 4 | Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative [J]. Ann Rheum Dis, 2010, 69(9):1580-1588. | 
																													
																						| 5 | Sakellariou G, Scirè CA, Verstappen SM, et al. In patients with early rheumatoid arthritis, the new ACR/EULAR definition of remission identifies patients with persistent absence of functional disability and suppression of ultrasonoimagedata synovitis [J]. Ann Rheum Dis, 2013, 72(2): 245-249. | 
																													
																						| 6 | Caporali R, Smolen JS. Back to the future: forget ultrasound and focus on clinical assessment in rheumatoid arthritis management [J]. Ann Rheum Dis, 2018, 77(1): 18-20. | 
																													
																						| 7 | Filippucci E, Cipolletta E, Mashadi Mirza R, et al. Ultrasound imaging in rheumatoid arthritis [J]. Radiol Med, 2019, 124(11): 1087-1100. | 
																													
																						| 8 | D'Agostino MA, Terslev L, Aegerter P, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-Part 1: definition and development of a standardised, consensus-based scoring system [J]. RMD Open, 2017, 3(1): e000428. | 
																													
																						| 9 | Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine [J]. Gastrointest Endosc, 2020, 92(4): 807-812. | 
																													
																						| 10 | Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology [J]. Nat Rev Cancer, 2018, 18(8): 500-510. | 
																													
																						| 11 | Gore JC. Artificial intelligence in medical imaging[J]. Magn Reson Imaging, 2020, 68: A1-A4. | 
																													
																						| 12 | Barragán-Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: A technology review [J]. Phys Med, 2021, 83: 242-256. | 
																													
																						| 13 | Shen YT, Chen L, Yue WW, et al. Artificial intelligence in ultrasound [J]. Eur J Radiol, 2021, 139: 109717. | 
																													
																						| 14 | Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound [J]. Neurology, 2010, 75(6): 526-531. | 
																													
																						| 15 | Jansen M, van Alfen N, Nijhuis van der Sanden MW, et al. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy [J]. Neuromuscul Disord, 2012, 22(4): 306-317. | 
																													
																						| 16 | Shin Y, Yang J, Lee YH, et al. Artificial intelligence in musculoskeletal ultrasound imaging [J]. Ultrasonography, 2021, 40(1): 30-44. | 
																													
																						| 17 | Faeghi F, Ardakani AA, Acharya UR, et al. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: A comparison with radiologists' assessment [J]. Eur J Radiol, 2021, 136: 109518. | 
																													
																						| 18 | Yu S, Tan KK, Sng BL, et al. Feature extraction and classification for ultrasound images of lumbar spine with support vector machine [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2014, 2014: 4659-4662. | 
																													
																						| 19 | Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey [J]. Biomed Res Int, 2018, 2018: 5137904. | 
																													
																						| 20 | Smerilli G, Cipolletta E, Sartini G, et al. Development of a convolutional neural network for the identification and the measurement of the median nerve on ultrasound images acquired at carpal tunnel level [J]. Arthritis Res Ther, 2022, 24(1): 38. | 
																													
																						| 21 | Tang S, Yang X, Shajudeen P, et al. A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo [J]. Med Image Anal, 2021,74: 102221. | 
																													
																						| 22 | Buch MH, Eyre S, McGonagle D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis [J]. Nat Rev Rheumatol, 2021, 17(1): 17-33. | 
																													
																						| 23 | Veronese E, Stramare R, Campion A, et al. Improved detection of synovial boundaries in ultrasound examination by using a cascade of active-contours [J]. Med Eng Phys, 2013, 35(2): 188-194. | 
																													
																						| 24 | Cao K, Mills DM, Thiele RG, et al. Toward quantitative assessment of rheumatoid arthritis using volumetric ultrasound [J]. IEEE Trans Biomed Eng, 2016, 63(2): 449-458. | 
																													
																						| 25 | Cupek R, Ziębiński A. Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods [J]. Reumatologia, 2016, 54(5): 239-242. | 
																													
																						| 26 | Szkudlarek M, Court-Payen M, Jacobsen S, et al. Interobserver agreement in ultrasonography of the finger and toe joints in rheumatoid arthritis [J]. Arthritis Rheum, 2003, 48(4): 955-962. | 
																													
																						| 27 | Mielnik P, Fojcik M, Segen J, et al. A novel method of synovitis stratification in ultrasound using machine learning algorithms: results from clinical validation of the MEDUSA project [J]. Ultrasound Med Biol, 2018, 44(2): 489-494. | 
																													
																						| 28 | Andersen JKH, Pedersen JS, Laursen MS, et al. Neural networks for automatic scoring of arthritis disease activity on ultrasound images [J]. RMD Open, 2019, 5(1): e000891. | 
																													
																						| 29 | Christensen ABH, Just SA, Andersen JKH, et al. Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients [J]. Ann Rheum Dis, 2020, 79(9): 1189-1193. | 
																													
																						| 30 | Zhou Z, Zhao C, Qiao H, et al. RATING: Medical knowledge-guided rheumatoid arthritis assessment from multimodal ultrasound images via deep learning [J]. Patterns (N Y), 2022, 3(10): 100592. | 
																													
																						| 31 | Stoel B. Use of artificial intelligence in imaging in rheumatology - current status and future perspectives [J]. RMD Open, 2020, 6(1): e001063. | 
																													
																						| 32 | Cipolletta E, Fiorentino MC, Moccia S, et al. Artificial intelligence for ultrasound informative image selection of metacarpal head cartilage.A Pilot Study[J]. Front Med (Lausanne), 2021, 8: 589197. | 
																													
																						| 33 | Fiorentino MC, Cipolletta E, Filippucci E, et al. A deep-learning framework for metacarpal-head cartilage-thickness estimation in ultrasound rheumatological images [J]. Comput Biol Med, 2022, 141: 105117. |