切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2023, Vol. 20 ›› Issue (12) : 1294 -1299. doi: 10.3877/cma.j.issn.1672-6448.2023.12.013

基础研究

不同超声治疗时间激励微泡空化对肿瘤血流灌注的影响
张静1, 张毅1, 蔡治平1, 魏俊帅1, 刘政1,()   
  1. 1. 400037 重庆,陆军军医大学第二附属医院超声科
  • 收稿日期:2023-02-05 出版日期:2023-12-01
  • 通信作者: 刘政

Effect of treatment with ultrasound-stimulated microbubbles for different durations on tumor blood perfusion in mice

Jing Zhang1, Yi Zhang1, Zhiping Cai1, Junshuai Wei1, Zheng Liu1,()   

  1. 1. Department of Ultrasound, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
  • Received:2023-02-05 Published:2023-12-01
  • Corresponding author: Zheng Liu
引用本文:

张静, 张毅, 蔡治平, 魏俊帅, 刘政. 不同超声治疗时间激励微泡空化对肿瘤血流灌注的影响[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1294-1299.

Jing Zhang, Yi Zhang, Zhiping Cai, Junshuai Wei, Zheng Liu. Effect of treatment with ultrasound-stimulated microbubbles for different durations on tumor blood perfusion in mice[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2023, 20(12): 1294-1299.

目的

探讨不同超声治疗时间对超声激励微泡空化增强小鼠MC38肿瘤血流灌注的影响,并对机制进行初步分析。

方法

选取54只大腿内侧皮下种植MC38的荷瘤小鼠,利用飞依诺超声诊疗一体机Vflash模式激励微泡空化行超声治疗(MI=0.3)。小鼠按超声治疗时间(t)随机分为6组(n=9):A组,t=1 min;B组,t=3 min;C组,t=5 min;D组,t=7 min;E组,t=10 min;F组(对照组),不接受超声治疗。每组治疗前后分别行超声造影检查,通过治疗前后峰值强度(PI)比、曲线下面积(AUC)比及肿瘤血流灌注面积比综合评估肿瘤血流灌注情况。治疗后,每组随机取2只小鼠肿瘤组织进行HE染色,观察治疗后病理学改变;取各组余下的7只小鼠肿瘤组织进行一氧化氮含量测定。

结果

超声激励微泡空化治疗后,C、D、E组治疗前后PI比、AUC比及灌注面积比均明显高于对照组(P均<0.05);其中D组治疗前后PI比、AUC比最高,明显高于C组(P<0.05)、B组(P<0.05)、A组(P<0.01),灌注面积比高于A组(P<0.01)、B组(P<0.05)。病理结果显示C、D、E组肿瘤微血管扩张充血,其中D组扩张微血管数量最多,充血最明显。超声治疗的各组肿瘤组织内一氧化氮含量较对照组增加,其中D组一氧化氮含量最高,但各组间差异无统计学意义(P>0.05)。

结论

超声激励微泡空化可以增强小鼠MC38肿瘤血流灌注,超声治疗时间延长到5 min以上,肿瘤血流增强效果更加明显;超声治疗7 min时,超声肿瘤血流效应最为明显。其机制可能与超声激励微泡空化导致微血管扩张有关。

Objective

To investigate the effect of treatment with ultrasound-stimulated microbubbles (USMB) for different durations in enhancing blood perfusion in MC38 tumors in mice, and to analyze the underlying mechanism preliminarily.

Methods

A total of 54 tumor-bearing mice with MC38 tumor cells implanted subcutaneously on the inner thigh were selected and treated by microbubble cavitation stimulated using the VINNO US system in Vflash mode (mechanical index=0.3). The mice were randomly divided into 6 groups according to the treatment duration, with 9 mice in each group: Group A, t=1 min; Group B, t=3 min; Group C, t=5 min; Group D, t=7 min; Group E, t=10 min; Group F (control group), no ultrasound therapy. Contrast-enhanced ultrasound examinations were performed before and after treatment for each group, and tumor perfusion was evaluated comprehensively by peak intensity (PI) ratio, area under curve (AUC) ratio, and tumor perfusion area ratio before and after treatment.Two mice in each group were randomly selected to take tumor tissues for HE staining to observe the pathological changes after treatment. The remaining 7 mice in each group were collected for the determination of nitric oxide (NO) content.

Results

After ultrasonic stimulation, the PI ratio, AUC ratio, and perfusion area ratio in Groups C, D, and E were significantly higher than those of the control group (P<0.05). Group D had the highest PI ratio and AUC ratio, which were significantly higher than those of Groups C (P<0.05), B (P<0.05), and A (P<0.01), and the perfusion area ratio in Group D was higher than those of Groups A (P<0.01) and B (P<0.05). The pathological results showed that the tumor microvessels in Groups C, D, and E were dilated and congested, with the number of dilated microvessels being most and congestion being most obvious in group D. The content of NO in tumor tissues of each group undergoing ultrasound therapy was higher than that of the control group. The content of NO in group D was the highest, but there was no significant difference among the groups (P>0.05).

Conclusion

Ultrasound-stimulated microbubbles can enhance blood perfusion of MC38 tumors in mice, and the enhancement effect is more obvious when the ultrasound treatment time is extended to more than 5 minutes. The best enhancement effect of tumor blood flow can be achieved when the ultrasound treatment time is 7 minutes. The therapeutic mechanism may be related to microvascular dilatation caused by ultrasound-stimulated microbubbles.

图1 小鼠MC38肿瘤二维超声及超声造影定量图像。图a为肿瘤二维超声图像;图b为肿瘤超声造影图像,红线内为超声造影定量分析区域;图c为时间-强度曲线,依据曲线计算得出峰值强度与曲线下面积
表1 各组小鼠超声治疗前后肿瘤血流效应分析(,每组n=9)
图2 各组小鼠肿瘤的二维超声及治疗前后超声造影峰值图像。图中红线区域内为无灌注或低灌注区,图示治疗5 min(C组)、7 min(D组)、10 min(E组)后三组肿瘤血流灌注面积均较治疗前明显增加 注:A~E组分别为接受超声治疗1、3、5、7、10 min组;F组为未接受超声治疗组
图3 各组小鼠治疗后肿瘤组织病理图(HE ×100)。图a~e分别为接受超声治疗1、3、5、7、10 min;图f为未接受超声治疗。图d(超声治疗7 min)示微血管扩张充血最明显;图c(超声治疗5 min)、图e(超声治疗10 min)示微血管扩张充血相对不明显;图a(超声治疗1 min)、图b(超声治疗3 min)及图f(未接受超声治疗)示未见明显扩张充血的微血管(黑色箭头示微血管扩张充血)
图4 各组小鼠肿瘤一氧化氮含量箱式图 注:A~E组分别为接受超声治疗1、3、5、7、10 min组;F组为未接受超声治疗组
1
Miller KD, Nogueira L, Devasia T, et al. Cancer treatment and survivorship statistics, 2022[J]. CA Cancer J Clin, 2022, 72(5): 409-436.
2
Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment[J]. Int J Nanomedicine, 2018, 13(4): 6049-6058.
3
Provenzano PP, Cuevas C, Chang AE, et al. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma[J]. Cancer Cell, 2012, 21(3): 418-429.
4
Belcik JT, Mott BH, Xie A, et al. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation[J]. Cir Cardiovasc Imaging, 2015, 8(4): e002979.
5
Belcik JT, Davidson BP, Xie A, et al. Augmentation of muscle blood flow by ultrasound cavitation is mediated by ATP and purinergic signaling[J]. Circulation, 2017, 135(13): 1240-1252.
6
Xie F, Slikkerveer J, Gao S, et al. Coronary and microvascular thrombolysis with guided diagnostic ultrasound and microbubbles in acute ST segment elevation myocardial infarction[J]. J Am Soc Echocardiogr, 2011, 24(12): 1400-1408.
7
唐娜娇, 唐家伟, 张毅, 等. 微泡超声空化增强乏血供肿瘤血流灌注的实验研究[J]. 中华超声影像学杂志, 2021, 30(2): 167-172.
8
乔学研, 陈重, 益磋, 等. 诊断超声联合微泡对兔VX_2肿瘤的血流增强效应[J]. 临床超声医学杂志, 2017, 19(4): 217-221.
9
Luo T, Bai L, Zhang Y, et al. Optimal treatment occasion for ultrasound stimulated microbubbles in promoting gemcitabine delivery to VX2 tumors[J]. Drug Deliv, 2022, 29(1): 2796-2804.
10
He Y, Dong XH, Zhu Q, et al. Ultrasound-triggered microbubble destruction enhances the radiosensitivity of glioblastoma by inhibiting PGRMC1-mediated autophagy in vitro and in vivo[J]. Mil Med Res, 2022, 9(1): 9.
11
王亚辉, 益磋, 冯爽, 等. 诊断超声产生的血流增强效应及肿瘤释药研究[J/CD]. 中华医学超声杂志(电子版), 2018, 15(4): 303-308.
12
张毅, 冯爽, 唐娜娇, 等. 超声诊疗一体机VINNO 70空化调控功能及声学测量的研究[J]. 临床超声医学杂志, 2021, 23(3): 161-165.
13
白露华, 罗婷婷, 唐家伟, 等. 不同超声脉冲宽度和脉冲重复频率组合激励微泡空化对肿瘤血流灌注及释药的影响[J]. 陆军军医大学学报, 2022, 44(9): 935-942.
14
Feng S, Qiao W, Tang J, et al. Chemotherapy augmentation using low-intensity ultrasound combined with microbubbles with different mechanical indexes in a pancreatic cancer model[J]. Ultrasound Med Biol, 2021, 47(11): 3221-3230.
15
姚雷, 杨国良, 殷佳蓓, 等. 不同占空比低强度诊断超声联合微泡对大鼠乏血供肿瘤血流灌注影响的实验研究[J]. 临床超声医学杂志, 2022, 24(8): 561-566.
16
Liu P, Wang X, Zhou S, et al. Effects of a novel ultrasound contrast agent with long persistence on right ventricular pressure: Comparison with SonoVue[J]. Ultrasonics, 2011, 51(2): 210-214.
17
Peronneau P, Lassau N, Leguerney I, et al. Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization[J]. Ultraschall Med, 2010, 31(4): 370-378.
18
Lammertink BH, Bos C, Deckers R, et al. Sonochemotherapy: from bench to bedside[J]. Front Pharmacol, 2015, 6(10): 138.
19
Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells[J]. Adv Drug Deliv Rev, 2008, 60(10): 1103-1116.
20
Ingram N, Mcveigh LE, Abou-Saleh RH, et al. A single short ‘tone burst’ results in optimal drug delivery to tumours using ultrasound-triggered therapeutic microbubbles[J]. Pharmaceutics, 2022, 14(3): 622.
21
Bush N, Healey A, Shah A, et al. Therapeutic dose response of acoustic cluster therapy in combination with irinotecan for the treatment of human colon cancer in mice[J]. Front Pharmacol, 2019, 10(19): 1299.
[1] 孟庆国, 唐艺加, 王斯佳, 周杰, 冯天航, 刘学兵, 舒庆兰, 邓燕, 尹立雪, 李春梅. 斑点追踪成像和组织多普勒同步成像对不同起搏模式下左心室心肌同步性的评估[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1223-1230.
[2] 陈佳易, 袁帅, 胡胜男, 步笑辉, 牟芸, 郑哲岚. 左心室压力-应变环联合Tei指数评价慢性中重度主动脉瓣反流患者左心功能的初步研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1231-1236.
[3] 戴超超, 蒋天安, 包凌云, 谭艳娟. 乳腺局部结构扭曲病变的X线摄影与自动乳腺容积超声、乳腺增强磁共振的对比研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1237-1241.
[4] 罗润兰, 蒋文莉, 张艳, 罗渝昆. 超声高清微血流成像技术在鉴别乳腺良恶性结节中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1242-1247.
[5] 王铭, 杨萌, 赵瑞娜, 王若蛟, 陶葸茜, 齐振红, 张一休, 苏娜, 张睿, 刘思锐, 李建初, 姜玉新. 基于EULAR-OMERACT评分系统的类风湿关节炎超声评估效果研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1248-1253.
[6] 陈丽娟, 李晓琴, 施燕芸, 段彤彤. 胎儿左头臂静脉异常的超声特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1260-1265.
[7] 王德辉, 邓学东. 胎儿室间隔完整型肺动脉闭锁的超声心动图评估及预后分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1266-1270.
[8] 王秋莲, 张莹, 李春敏, 耿斌. 儿童先天性右肺动脉异常的超声心动图诊断及漏误诊分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1271-1275.
[9] 唐博, 罗季平, 周桃, 黄多, 刘廷琼, 陈亚萍, 岳文胜. 慢性肾衰竭血液透析患者造瘘侧上肢肱动脉-指端微小动脉血流动力学变化特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1276-1281.
[10] 赵里汶, 贺需旗, 李凯. 虚拟导航辅助超声引导下经皮射频消融治疗直径≤2 cm肾上腺良性肿瘤的疗效研究[J]. 中华医学超声杂志(电子版), 2023, 20(12): 1282-1286.
[11] 李鹏, 崔庆伟, 张盼, 唐浩, 庄梦梦, 孙晗, 孙媛, 李丹, 陈文娣, 毛学飞, 孙勇. 应用床旁超声监测胃残余量指导重症烧伤患者早期肠内营养的临床价值[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 24-33.
[12] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[13] 刘国安, 陈一杰, 赖江琼, 余丽平, 康春梅. 高频超声联合多普勒超声诊断腹外疝的临床价值[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 106-110.
[14] 初桂芝, 王淑娟, 栾文杰, 郭桂敏, 官春霞, 武晓峰, 李松洋, 王好玲, 栾泽东. 早孕期羊膜带综合征产前超声诊断分析[J]. 中华诊断学电子杂志, 2024, 12(01): 57-60.
[15] 杜梅霞, 闫萌萌, 肖丽珊, 张芳芳, 姜彩云, 赵诚, 姚国栋, 宁春平. 痛风患者第一跖趾关节超声征象与临床疼痛的相关性分析[J]. 中华诊断学电子杂志, 2024, 12(01): 31-37.
阅读次数
全文


摘要