1 |
Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine [J]. Gastrointest Endosc, 2020, 92(4): 807-812.
|
2 |
Zhou J, Du M, Chang S, et al. Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis [J]. Cardiovasc Ultrasound, 2021, 19(1): 1-11.
|
3 |
Deshmukh R, Rathi P. Artificial intelligence in medicine [J]. J Assoc Physicians India, 2022, 70(3): 11-12.
|
4 |
Koulaouzidis G, Jadczyk T, Iakovidis DK, et al. Artificial intelligence in cardiology-A narrative review of current status [J]. J Clin Med, 2022, 11(13): 3910-3913.
|
5 |
Suzuki K. Machine learning in medical imaging before and after introduction of deep learning [J]. J Med Imag Health In, 2017, 34(2): 14-24.
|
6 |
Narang A, Bae R, Hong H, et al. Acquisition of diagnostic echocardioimagedata images by novices using a deep learning based image guidance algorithm [J]. JAMA Cardiol, 2021, 6(6): 624-632.
|
7 |
Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms using deep learning [J]. NPJ Digit Med, 2018, 1(1): 1-8.
|
8 |
Ostvik A, Smistad E, Aase SA, et al. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks [J]. Ultrasound Med Biol, 2019, 45(2): 374-384.
|
9 |
Al Kindi D, Househ M, Alam T, et al. Artificial intelligence models for heart chambers segmentation from 2D echocardioimagedata images: a scoping review [J]. Stud Health Technol Inform, 2022, 289: 264-267.
|
10 |
Arafati A, Morisawa D, Avendi MR, et al. Generalizable fully automated multi-label segmentation of four-chamber view echocardiograms based on deep convolutional adversarial networks [J]. J R Soc Interface, 2020, 17(169): 20200267.
|
11 |
Painchaud N, Duchateau N, Bernard O, et al. Echocardiography segmentation with enforced temporal consistency [J]. IEEE Trans Med Imaging, 2022, 41(10): 2867-2878.
|
12 |
Gandhi S, Mosleh W, Shen J, et al. Automation, machine learning, and artificial intelligence in echocardiography: A brave new world [J]. Echocardiography, 2018, 35(9): 1402-1418.
|
13 |
Medvedofsky D, Mor-Avi V, Kruse E, et al. Quantification of right ventricular size and function from contrast-enhanced three-dimensional echocardioimagedata images [J]. J Am Soc Echocardiogr, 2017, 30(12): 1193-1202.
|
14 |
Nochioka K, Roca GQ, Claggett B, et al. Right ventricular function, right ventricular-pulmonary artery coupling, and heart failure risk in 4 US communities The Atherosclerosis Risk in Communities (ARIC) Study [J]. JAMA Cardiol, 2018, 3(10): 939-948.
|
15 |
Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardioimagedata quantification of right ventricular size and function: validation against cardiac magnetic resonance [J]. J Am Soc Echocardiogr, 2019, 32(8): 969-977.
|
16 |
Zhu Y, Bao YW, Zheng KC, et al. Quantitative assessment of right ventricular size and function with multiple parameters from artificial intelligence-based three-dimensional echocardiography: A comparative study with cardiac magnetic resonance [J]. Echocardiography, 2022, 39(2): 223-232.
|
17 |
Schneider M, Bartko P, Geller W, et al. A machine learning algorithm supports ultrasound-naive novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF [J]. Int J Cardiovasc Imaging, 2021, 37(2): 577-586.
|
18 |
Asch FM, Poilvert N, Abraham T, et al. Automated echocardioimagedata quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert [J]. Circ Cardiovasc Imaging, 2019, 12(9): e009303.
|
19 |
Lang R, Badano L, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging [J]. J Am Soc Echocardiogr, 2015, 28(1): 1-39.
|
20 |
Salte IM, Ostvik A, Smistad E, et al. Artificial intelligence for automatic measurement of left ventricular strain in echocardiography [J]. JACC Cardiovasc Imaging, 2021, 14(10): 1918-1928.
|
21 |
Karuzas A, Sablauskas K, Verikas D, et al. Accurate prediction of left ventricular diastolic dysfunction in 2D echocardiography using ensemble of deep convolutional neural networks [J]. Eur Heart J, 2020, 41(2): 3436.
|
22 |
Jiang R, Yeung D, Behnami D, et al. A novel continuous left ventricular diastolic function score using machine learning [J]. J Am Soc Echocardiogr, 2022, 35(12): 1247-1255.
|
23 |
Choi DJ, Park JJ, Ali T, et al. Artificial intelligence for the diagnosis of heart failure [J]. NPJ Digit Med, 2020, 3(54): 1-6.
|
24 |
Nedadur R, Wang B, Tsang W. Artificial intelligence for the echocardioimagedata assessment of valvular heart disease [J]. Heart, 2022, 108(20): 1592-1599.
|
25 |
Chandra V, Sarkar PG, Singh V. Mitral valve leaflet tracking in echocardiography using custom Yolo3 [J]. Procedia Computer Sci, 2020, 171(12): 820-828.
|
26 |
Sengupta PP, Shrestha S, Kagiyama N, et al. A machine-learning framework to identify distinct phenotypes of aortic stenosis severity [J]. JACC Cardiovasc Imaging, 2021, 14(9): 1707-1720.
|
27 |
Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos [J]. Comput Biol Med, 2016, 73(1): 47-55.
|
28 |
Yu F, Huang HB, Yu QH, et al. Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy [J]. Ann Transl Med, 2021, 9(2): 108-126.
|
29 |
Duffy G, Cheng PP, Yuan N, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning [J]. JAMA Cardiol, 2022, 7(4): 386-395.
|
30 |
Sengupta PP, Huang YM, Bansal M, et al. Cognitive machine-learning algorithm for cardiac imaging a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy [J]. Circ Cardiovasc Imaging, 2016, 9(6): e004330.
|
31 |
Kusunose K, Abe T, Haga A, et al. A deep learning approach for assessment of regional wall motion abnormality from echocardioimagedata images [J]. JACC Cardiovasc Imaging, 2020, 13(2): 374-381.
|
32 |
Omar HA, Domingos JS, Patra A, et al. Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) [C]. Washington DC, 2018.
|
33 |
Li M, Zeng D, Xie Q, et al. A deep learning approach with temporal consistency for automatic myocardial segmentation of quantitative myocardial contrast echocardiography [J]. Int J Cardiovas Imaging, 2021, 37(6): 1967-1978.
|
34 |
Tian M, Zheng M, Qiu S, et al. A prediction model of microcirculation disorder in myocardium based on ultrasonic images [J]. J Amb Intel Hum Comp, 2023, 14(6): 7319-7330.
|
35 |
刘梦怡, 吴伟春. 人工智能在超声心动图中的应用现状及进展 [J/OL]. 中华医学超声杂志(电子版), 2021, 18(2): 216-219.
|