切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (01) : 10 -23. doi: 10.3877/cma.j.issn.1672-6448.2024.01.002

专家共识

基于超声解剖标志的甲状腺良性结节热消融临床操作专家共识
北京医学会超声医学分会, 北京市超声医学质量控制和改进中心   
  • 收稿日期:2023-12-02 出版日期:2024-01-01
  • 基金资助:
    甲状腺良性症状性结节微创消融与手术切除多中心对照研究(北京市卫生健康委员会-首发基金)(2022-1-2022)

Expert consensus on clinical operation of thermal ablation of benign thyroid nodules based on ultrasonic anatomic markers

Ultrasonic Medical Branch of Beijing Medical Association, Beijing Ultrasonic Medical Quality Control and Improvement Center   

  • Received:2023-12-02 Published:2024-01-01
引用本文:

北京医学会超声医学分会, 北京市超声医学质量控制和改进中心. 基于超声解剖标志的甲状腺良性结节热消融临床操作专家共识[J]. 中华医学超声杂志(电子版), 2024, 21(01): 10-23.

Ultrasonic Medical Branch of Beijing Medical Association, Beijing Ultrasonic Medical Quality Control and Improvement Center. Expert consensus on clinical operation of thermal ablation of benign thyroid nodules based on ultrasonic anatomic markers[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(01): 10-23.

甲状腺良性结节热消融术已在国内外应用20余年,其具有微创、可重复性好、术后恢复快、不影响甲状腺功能、术后美观等优势,因此更易被患者接受。对于症状性甲状腺良性结节,热消融术已逐渐成为外科手术切除的替代治疗方法,并取得令人满意的疗效。虽然,近几年国内外多个相关学术组织发表了甲状腺良恶性结节热消融治疗的推荐意见或专家共识,但均未涉及基于甲状腺及其周围结构超声解剖的术中相关风险规避的操作规范,规范的超声扫查技能和术中超声引导是超声引导甲状腺热消融技术安全应用和临床推广的先决条件。鉴于此,由北京医学会超声医学分会牵头,组织全国甲状腺肿瘤消融专家,对甲状腺及甲状腺周围结构超声解剖及热消融术中风险规避方法进行研讨,几经易稿,达成以下共识,以期指导生成最佳实践建议。

图1 经皮经喉超声真假声带扫查示意图 注:FC为假声带;TC为真声带;AR为杓状软骨
图2 超声危险三角区
图3 Berry韧带超声图像。图a示未隔离前Berry韧带表现为线状高回声(黄色箭头所示);图b示进行液体隔离后可清晰显示的Berry韧带(黄色箭头所示)
图4 喉返神经与Berry韧带的位置关系示意图。图a为喉返神经位于Berry韧带浅方;图b为喉返神经穿过Berry韧带;图c为喉返神经位于Berry韧带深方
图5 以甲状腺下动脉分支为示标的喉返神经走行区(黄色箭头)
图6 Z结节示意图 注:ITA为甲状腺下动脉;RLN为喉返神经
图7 小“C”隔离法。图示结节靠近前外侧被膜,在腺体前方及外侧筋膜间隙注入隔离液
图8 大“C” 隔离法。图示结节靠近后被膜或内侧被膜,除在腺体外侧及后方筋膜间隙注入隔离液外,还应在危险三角区注入足量隔离液(隔离带厚度≥5 mm)
图9 “类孤岛式”隔离法。图示结节体积较大,靠近各方向被膜,应在腺体前方、外侧、后方及危险三角区筋膜间隙注入隔离液(隔离带厚度≥5 mm),使结节漂浮在隔离液中,呈“类孤岛式”隔离
图10 “悬吊式”隔离法。图示对于峡部正中或靠近峡部的结节,可采用“悬吊式”隔离法,在腺体前后间隙注射液体隔离带
1
Papini E, Monpeyssen H, Frasoldati A, et al. 2020 European Thyroid Association Clinical Practice Guideline for the use of image-guided ablation in benign thyroid nodules [J]. Eur Thyroid J, 2020, 9(4): 172-185.
2
Orloff LA, Noel JE, Stack BC Jr, et al. Radiofrequency ablation and related ultrasound-guided ablation technologies for treatment of benign and malignant thyroid disease: An international multidisciplinary consensus statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association [J]. Head Neck, 2022, 44(3): 633-660.
3
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations [J]. BMJ, 2008, 336(7650): 924-926.
4
Sillery JC, Reading CC, Charboneau JW, et al. Thyroid follicular carcinoma: sonographic features of 50 cases [J]. AJR Am J Roentgenol, 2010, 194(1): 44-54.
5
Park JW, Kim DW, Kim D, et al. Korean Thyroid Imaging Reporting and Data System features of follicular thyroid adenoma and carcinoma: a single-center study [J]. Ultrasonography, 2017, 36(4): 349-354.
6
Sangalli G, Serio G, Zampatti C, et al. Fine needle aspiration cytology of the thyroid: a comparison of 5469 cytological and final histological diagnoses [J]. Cytopathology, 2006, 17(5): 245-250.
7
Mehanna R, Murphy M, Mccarthy J, et al. False negatives in thyroid cytology: impact of large nodule size and follicular variant of papillary carcinoma [J]. Laryngoscope, 2013, 123(5): 1305-1309.
8
Russ G, Bonnema SJ, Erdogan MF, et al. European Thyroid Association Guidelines for ultrasound malignancy risk stratification of thyroid nodules in adults: The EU-TIRADS [J]. Eur Thyroid J, 2017, 6(5): 225-237.
9
Hegedus L. Clinical practice. The thyroid nodule [J]. N Engl J Med, 2004, 351(17): 1764-1771.
10
Kim JH, Baek JH, Lim HK, et al. 2017 Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology [J]. Korean J Radiol, 2018, 19(4): 632-655.
11
Jenkinson C, Coulter A, Wright L. Short form 36 (SF36) health survey questionnaire: normative data for adults of working age [J]. BMJ, 1993, 306(6890): 1437-1440.
12
Watt T, Bjorner JB, Groenvold M, et al. Development of a short version of the thyroid-related patient-reported outcome ThyPRO [J]. Thyroid, 2015, 25(10): 1069-1079.
13
Cesareo R, Palermo A, Pasqualini V, et al. Radiofrequency ablation on autonomously functioning thyroid nodules: a critical appraisal and review of the literature [J]. Front Endocrinol (Lausanne), 2020, 11: 317.
14
Kim HJ, Cho SJ, Baek JH, et al. Efficacy and safety of thermal ablation for autonomously functioning thyroid nodules: a systematic review and meta-analysis [J]. Eur Radiol, 2021, 31(2): 605-615.
15
Mauri G, Papini E, Bernardi S, et al. Image-guided thermal ablation in autonomously functioning thyroid nodules. A retrospective multicenter three-year follow-up study from the Italian Minimally Invasive Treatment of the Thyroid (MITT) Group [J]. Eur Radiol, 2022, 32(3): 1738-1746.
16
Hegedus L, Bonnema SJ. Approach to management of the patient with primary or secondary intrathoracic goiter [J]. J Clin Endocrinol Metab, 2010, 95(12): 5155-5162.
17
Kwok A, Faigel DO. Management of anticoagulation before and after gastrointestinal endoscopy [J]. Am J Gastroenterol, 2009, 104(12): 3085-3097; quiz 3098.
18
Maher DI, Goare S, Forrest E, et al. Routine preoperative laryngoscopy for thyroid surgery is not necessary without risk factors [J]. Thyroid, 2019, 29(11): 1646-1652.
19
Su E, Hamilton C, Tawfik DS, et al. Laryngeal ultrasound detects vocal fold immobility in adults: a systematic review [J]. J Ultrasound Med, 2022, 41(8): 1873-1888.
20
Gambardella C, Offi C, Romano RM, et al. Transcutaneous laryngeal ultrasonography: a reliable, non-invasive and inexpensive preoperative method in the evaluation of vocal cords motility-a prospective multicentric analysis on a large series and a literature review [J]. Updates Surg, 2020, 72(3): 885-892.
21
Woo JW, Suh H, Song RY, et al. A novel lateral-approach laryngeal ultrasonography for vocal cord evaluation [J]. Surgery, 2016, 159(1): 52-56.
22
De Miguel M, Peláez EM, Caubet E, et al. Accuracy of transcutaneous laryngeal ultrasound for detecting vocal cord paralysis in the immediate postoperative period after total thyroidectomy [J]. Minerva Anestesiol, 2017, 83(12): 1239-1247.
23
Wolff S, Gałązka A, Borkowski R, et al. Factors associated with injury to recurrent laryngeal nerve in patients undergoing surgery for thyroid cancer: a single-centre study using translaryngeal ultrasound [J]. J Voice, 2022, doi: 10.1016/j.jvoice.2022.08.009.
24
Wong KP, Au KP, Lam S, et al. Vocal cord palsies missed by transcutaneous laryngeal ultrasound (TLUSG): Do they experience worse outcomes? [J]. World J Surg, 2019, 43(3): 824-830.
25
Kılıç , Terzioğlu SG, Gülçek SY, et al. The role of ultrasonography in the assessment of vocal cord functions after thyroidectomy [J]. J Invest Surg, 2018, 31(1): 24-28.
26
Wong KP, Woo JW, Li JY, et al. Using transcutaneous laryngeal ultrasonography (TLUSG) to assess post-thyroidectomy patients' vocal cords: Which maneuver best optimizes visualization and assessment accuracy? [J]. World J Surg, 2016, 40(3): 652-658.
27
Kandil E, Deniwar A, Noureldine SI, et al. Assessment of vocal fold function using transcutaneous laryngeal ultrasonography and flexible laryngoscopy [J]. JAMA Otolaryngol Head Neck Surg, 2016, 142(1): 74-78.
28
Borel F, Delemazure AS, Espitalier F, et al. Transcutaneous ultrasonography in early postoperative diagnosis of vocal cord palsy after total thyroidectomy [J]. World J Surg, 2016, 40(3): 665-671.
29
Wong KP, Lang BH, Chang YK, et al. Assessing the validity of transcutaneous laryngeal ultrasonography (TLUSG) after thyroidectomy: What factors matter? [J]. Ann Surg Oncol, 2015, 22(6): 1774-1780.
30
Wong KP, Lang BH, Ng SH, et al. A prospective, assessor-blind evaluation of surgeon-performed transcutaneous laryngeal ultrasonography in vocal cord examination before and after thyroidectomy [J]. Surgery, 2013, 154(6): 1158-1164; discussion 1164-1165.
31
Patel A, Spychalski P, Aszkielowicz A, et al. Transcutaneous laryngeal ultrasound for vocal cord paralysis assessment in patients undergoing thyroid and parathyroid surgery-a systematic review and meta-analysis [J]. J Clin Med, 2021, 10(22): 5393.
32
Phitayakorn R, Mchenry CR. Follow-up after surgery for benign nodular thyroid disease: evidence-based approach [J]. World J Surg, 2008, 32(7): 1374-1384.
33
Medas F, Tuveri M, Canu GL, et al. Complications after reoperative thyroid surgery: retrospective evaluation of 152 consecutive cases [J]. Updates Surg, 2019, 71(4): 705-710.
34
Hardman JC, Smith JA, Nankivell P, et al. Re-operative thyroid surgery: a 20-year prospective cohort study at a tertiary referral centre [J]. Eur Arch Otorhinolaryngol, 2015, 272(6): 1503-1508.
35
Ha EJ, Baek JH, Lee JH, et al. Radiofrequency ablation of benign thyroid nodules does not affect thyroid function in patients with previous lobectomy [J]. Thyroid, 2013, 23(3): 289-293.
36
Yan L, Zhang M, Xie F, et al. Efficacy and safety of radiofrequency ablation for benign thyroid nodules in patients with previous thyroid lobectomy [J]. BMC Med Imaging, 2021, 21(1): 47.
37
Cao XJ, Liu J, Zhu YL, et al. Efficacy and safety of thermal ablation for solitary T1bN0M0 papillary thyroid carcinoma: a multicenter study [J]. J Clin Endocrinol Metab, 2021, 106(2): e573-e581.
38
Cho SJ, Baek SM, Lim HK, et al. Long-term follow-up results of ultrasound-guided radiofrequency ablation for low-risk papillary thyroid microcarcinoma: more than 5-year follow-up for 84 tumors [J]. Thyroid, 2020, 30(12): 1745-1751.
39
Gharib H, Hegedus L, Pacella CM, et al. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules [J]. J Clin Endocrinol Metab, 2013, 98(10): 3949-3957.
40
医疗事故分级标准(试行) [J]. 中国卫生法制, 2002, (5): 34-38.
41
Cao XJ, Yu MA, Zhu YL, et al. Ultrasound-guided thermal ablation for papillary thyroid microcarcinoma: a multicenter retrospective study [J]. Int J Hyperthermia, 2021, 38(1): 916-922.
42
Baek JH, Ha EJ, Choi YJ, et al. Radiofrequency versus ethanol ablation for treating predominantly cystic thyroid nodules: a randomized clinical trial [J]. Korean J Radiol, 2015, 16(6): 1332-1340.
43
Jin H, Lin W, Lu L, et al. Conventional thyroidectomy vs thyroid thermal ablation on postoperative quality of life and satisfaction for patients with benign thyroid nodules [J]. Eur J Endocrinol, 2021, 184(1): 131-141.
44
Schneider S. [Anatomy of the recurrent nerve in thyroid gland; its variations and incidences in surgery of thyroid gland] [J]. Helv Chir Acta, 1956, 23(6): 482-486.
45
Joe Hines O.. Schwartz's principles of surgery. 9th ed. [M]. New York: McGraw Hill Medical Pub, 2009.
46
Tang WJ, Sun SQ, Wang XL, et al. An applied anatomical study on the recurrent laryngeal nerve and inferior thyroid artery [J]. Surg Radiol Anat, 2012, 34(4): 325-332.
47
Bliss RD, Gauger PG, Delbridge LW. Surgeon's approach to the thyroid gland: surgical anatomy and the importance of technique [J]. World J Surg, 2000, 24(8): 891-897.
48
Henry BM, Sanna B, Graves MJ, et al. The reliability of the tracheoesophageal groove and the ligament of Berry as landmarks for identifying the recurrent laryngeal nerve: a cadaveric study and meta-analysis [J]. BioMed Res Int, 2017, 2017: 4357591.
49
Cervelli R, Mazzeo S, De Napoli L, et al. Radiofrequency ablation in the treatment of benign thyroid nodules: an efficient and safe alternative to surgery [J]. J Vasc Interv Radiol, 2017, 28(10): 1400-1408.
50
Berlin DD. The recurrent laryngeal nerves in total ablation of the normal thyroid gland: an anatomical and surgical study[J]. Surg Gynecol Obstet, 1935, 60: 19.
51
Sasou S, Nakamura S, Kurihara H. Suspensory ligament of Berry: its relationship to recurrent laryngeal nerve and anatomic examination of 24 autopsies [J]. Head Neck, 1998, 20(8): 695-698.
52
Uen YH, Chen TH, Shyu JF, et al. Surgical anatomy of the recurrent laryngeal nerves and its clinical applications in Chinese adults [J]. Surg Today, 2006, 36(4): 312-315.
53
Riddell VH. Injury to recurrent laryngeal nerves during thyroidectomy; a comparison between the results of identification and non-identification in 1022 nerves exposed to risk [J]. Lancet, 1956, 271(6944): 638-641.
54
Ardito G, Revelli L, D'alatri L, et al. Revisited anatomy of the recurrent laryngeal nerves [J]. Am J Surg, 2004, 187(2): 249-253.
55
Toniato A, Mazzarotto R, Piotto A, et al. Identification of the nonrecurrent laryngeal nerve during thyroid surgery: 20-year experience [J]. World J Surg, 2004, 28(7): 659-661.
56
Iacobone M, Citton M, Pagura G, et al. Increased and safer detection of nonrecurrent inferior laryngeal nerve after preoperative ultrasonography [J]. Laryngoscope, 2015, 125(7): 1743-1747.
57
Henry BM, Sanna B, Vikse J, et al. Zuckerkandl's tubercle and its relationship to the recurrent laryngeal nerve: A cadaveric dissection and meta-analysis [J]. Auris Nasus Larynx, 2017, 44(6): 639-647.
58
Roy AD, Gardiner RH, Niblock WM. Thyroidectomy and the recurrent laryngeal nerves [J]. Lancet, 1956, 270(6930): 988-990.
59
Jansson S, Tisell LE, Hagne I, et al. Partial superior laryngeal nerve (SLN) lesions before and after thyroid surgery [J]. World J Surg, 1988, 12(4): 522-527.
60
Cernea CR, Ferraz AR, Nishio S, et al. Surgical anatomy of the external branch of the superior laryngeal nerve [J]. Head Neck, 1992, 14(5): 380-383.
61
Cheruiyot I, Kipkorir V, Henry BM, et al. Surgical anatomy of the external branch of the superior laryngeal nerve: a systematic review and meta-analysis [J]. Langenbecks Arch Surg, 2018, 403(7): 811-823.
62
Aygun N, Demircioglu MK, Demircioglu ZG, et al. Factors influencing the relationship of the external branch of the superior laryngeal nerve with the superior pole vessels of the thyroid gland [J]. Sisli Etfal Hastan Tip Bul, 2020, 54(4): 469-474.
63
Ravikumar K, Sadacharan D, Muthukumar S, et al. EBSLN and factors influencing its identification and its safety in patients undergoing total thyroidectomy: a study of 456 cases [J]. World J Surg, 2016, 40(3): 545-550.
64
Baek JH, Jeong HJ, Kim YS, et al. Radiofrequency ablation for an autonomously functioning thyroid nodule [J]. Thyroid, 2008, 18(6): 675-676.
65
Cesareo R, Pasqualini V, Simeoni C, et al. Prospective study of effectiveness of ultrasound-guided radiofrequency ablation versus control group in patients affected by benign thyroid nodules [J]. J Clin Endocrinol Metab, 2015, 100(2): 460-466.
66
Deandrea M, Limone P, Basso E, et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules [J]. Ultrasound Med Biol, 2008, 34(5): 784-791
67
Kim YS, Rhim H, Tae K, et al. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience [J]. Thyroid, 2006, 16(4): 361-367.
68
Khanh HQ, Hung NQ, Vinh VH, et al. Efficacy of microwave ablation in the treatment of large (>/=3 cm) benign thyroid nodules [J]. World J Surg, 2020, 44(7): 2272-2279.
69
Baek JH, Kim YS, Lee D, et al. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition [J]. AJR Am J Roentgenol, 2010, 194(4): 1137-1142.
70
Nguyen VB, Nguyen TX, Nguyen VVH, et al. Efficacy and safety of single-session radiofrequency ablation in treating benign thyroid nodules: a short-term prospective cohort study [J]. Int J Endocrinol, 2021, 2021: 7556393.
71
De Boer H, Bom W, Veendrick P, et al. Hyperactive thyroid nodules treated by radiofrequency ablation: a Dutch single-centre experience [J]. Neth J Med, 2020, 78(2): 64-70.
72
Vuong NL, Dinh LQ, Bang HT, et al. Radiofrequency ablation for benign thyroid nodules: 1-year follow-up in 184 patients [J]. World J Surg, 2019, 43(10): 2447-2453.
73
Baek JH, Moon WJ, Kim YS, et al. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules [J]. World J Surg, 2009, 33(9): 1971-1977.
74
Ji Hong M, Baek JH, Choi YJ, et al. Radiofrequency ablation is a thyroid function-preserving treatment for patients with bilateral benign thyroid nodules [J]. J Vasc Interv Radiol, 2015, 26(1): 55-61.
75
Lim HK, Lee JH, Ha EJ, et al. Radiofrequency ablation of benign non-functioning thyroid nodules: 4-year follow-up results for 111 patients [J]. Eur Radiol, 2013, 23(4): 1044-1049.
76
Gervasio A, Mujahed I, Biasio A, et al. Ultrasound anatomy of the neck: the infrahyoid region [J]. J Ultrasound, 2010, 13(3): 85-89.
77
Wang JF, Wu T, Hu KP, et al. Complications following radiofrequency ablation of benign thyroid nodules: a systematic review [J]. Chin Med J (Engl), 2017, 130(11): 1361-1370.
78
Deandrea M, Sung JY, Limone P, et al. Efficacy and safety of radiofrequency ablation versus observation for nonfunctioning benign thyroid nodules: a randomized controlled international collaborative trial [J]. Thyroid, 2015, 25(8): 890-896.
79
Sim JS, Baek JH, Lee J, et al. Radiofrequency ablation of benign thyroid nodules: depicting early sign of regrowth by calculating vital volume [J]. Int J Hyperthermia, 2017, 33(8): 905-910.
80
Sim JS, Baek JH. Long-term outcomes following thermal ablation of benign thyroid nodules as an alternative to surgery: the importance of controlling regrowth [J]. Endocrinol Metab (Seoul), 2019, 34(2): 117-123.
81
Bernardi S, Giudici F, Cesareo R, et al. Five-year results of radiofrequency and laser ablation of benign thyroid nodules: a multicenter study from the Italian minimally invasive treatments of the thyroid group [J]. Thyroid, 2020, 30(12): 1759-1770.
82
Sim JS, Baek JH. Long-term outcomes of thermal ablation for benign thyroid nodules: the issue of regrowth [J]. Int J Endocrinol, 2021, 2021: 9922509.
83
Yan L, Luo Y, Xiao J, et al. Non-enhanced ultrasound is not a satisfactory modality for measuring necrotic ablated volume after radiofrequency ablation of benign thyroid nodules: a comparison with contrast-enhanced ultrasound [J]. Eur Radiol, 2021, 31(5): 3226-3236.
84
Zhang R, Xu M, Xie XY. The role of real-time contrast-enhanced ultrasound in guiding radiofrequency ablation of reninoma: case report and literature review [J]. Front Oncol, 2021, 11: 585257.
85
Minami Y, Kudo M. Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma [J]. World J Gastroenterol, 2011, 17(45): 4952-4959.
86
Mauri G, Pacella CM, Papini E, et al. Image-guided thyroid ablation: proposal for standardization of terminology and reporting criteria [J]. Thyroid, 2019, 29(5): 611-618.
87
Guang Y, He W, Luo Y, et al. Patient satisfaction of radiofrequency ablation for symptomatic benign solid thyroid nodules: our experience for 2-year follow up [J]. BMC Cancer, 2019, 19(1): 147.
88
Jeong WK, Baek JH, Rhim H, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients [J]. Eur Radiol, 2008, 18(6): 1244-1250.
89
Spiezia S, Garberoglio R, Milone F, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation [J]. Thyroid, 2009, 19(3): 219-225.
90
Wang B, Han ZY, Yu J, et al. Factors related to recurrence of the benign non-functioning thyroid nodules after percutaneous microwave ablation [J]. Int J Hyperthermia, 2017, 33(4): 459-464.
91
Lyshchik A, Moses R, Barnes SL, et al. Quantitative analysis of tumor vascularity in benign and malignant solid thyroid nodules [J]. J Ultrasound Med, 2007, 26(6): 837-846.
92
Zhang ZY, Lee JC, Yang W, et al. Percutaneous ablation of the tumor feeding artery for hypervascular hepatocellular carcinoma before tumor ablation [J]. Int J Hyperthermia, 2018, 35(1): 133-139.
93
Zhang J, Hao X, Yang Y, et al. Evaluation of supplementary diagnostic value of contrast-enhanced ultrasound for lymph node puncture biopsy [J]. J Thorac Dis, 2017, 9(11): 4791-4797.
94
Qu C, Liu H, Li XQ, et al. Percutaneous ultrasound-guided 'three-step' radiofrequency ablation for giant hepatic hemangioma (5-15 cm): a safe and effective new technique [J]. Int J Hyperthermia, 2020, 37(1): 212-219.
95
Li X, Xu M, Liu M, et al. Contrast-enhanced ultrasound-guided feeding artery ablation as add-on to percutaneous radiofrequency ablation for hypervascular hepatocellular carcinoma with a modified ablative technique and tumor perfusion evaluation [J]. Int J Hyperthermia, 2020, 37(1): 1016-1026.
96
Park HS, Baek JH, Park AW, et al. Thyroid radiofrequency ablation: updates on innovative devices and techniques [J]. Korean J Radiol, 2017, 18(4): 615-623.
97
Mauri G, Gennaro N, Lee MK, et al. Laser and radiofrequency ablations for benign and malignant thyroid tumors [J]. Int J Hyperthermia, 2019, 36(2): 13-20.
98
Zhang Y, Chu X, Liu Y, et al. The influence of nodule size on clinical efficacy of ethanol ablation and microwave ablation on cystic or predominantly cystic thyroid nodules [J]. Endocr Connect, 2022, 11(11): e220248.
99
Kim YJ, Baek JH, Ha EJ, et al. Cystic versus predominantly cystic thyroid nodules: efficacy of ethanol ablation and analysis of related factors [J]. Eur Radiol, 2012, 22(7): 1573-1578.
100
Kim JH, Lee HK, Lee JH, et al. Efficacy of sonographically guided percutaneous ethanol injection for treatment of thyroid cysts versus solid thyroid nodules [J]. AJR Am J Roentgenol, 2003, 180(6): 1723-1736.
101
Jang SW, Baek JH, Kim JK, et al. How to manage the patients with unsatisfactory results after ethanol ablation for thyroid nodules: role of radiofrequency ablation [J]. Eur J Radiol, 2012, 81(5): 905-910.
102
Sung JY, Baek JH, Kim KS, et al. Single-session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study [J]. Radiology, 2013, 269(1): 293-300.
103
Sung JY, Baek JH, Kim YS, et al. One-step ethanol ablation of viscous cystic thyroid nodules [J]. AJR Am J Roentgenol, 2008, 191(6): 1730-1733.
104
Del Prete S, Caraglia M, Russo D, et al. Percutaneous ethanol injection efficacy in the treatment of large symptomatic thyroid cystic nodules: ten-year follow-up of a large series [J]. Thyroid, 2002, 12(9): 815-821.
105
Frates MC, Benson CB, Charboneau JW, et al. Management of thyroid nodules detected at US: Society of Radiologists in ultrasound consensus conference statement [J]. Radiology, 2005, 237(3): 794-800.
106
Kim C, Lee JH, Choi YJ, et al. Complications encountered in ultrasonography-guided radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers [J]. Eur Radiol, 2017, 27(8): 3128-3137.
107
Wang LF, Lee KW, Kuo WR, et al. The efficacy of intraoperative corticosteroids in recurrent laryngeal nerve palsy after thyroid surgery [J]. World J Surg, 2006, 30(3): 299-303.
108
Emre A, Karadeniz Cakmak G, Karakaya Arpaci D, et al. The efficacy of intraoperative single dose methylprednisolone on recurrent laryngeal nerve function after thyroidectomy [J]. Int Surg, 2016, doi: 10.9738/INTSURG-D-15-00222.1.
No related articles found!
阅读次数
全文


摘要