切换至 "中华医学电子期刊资源库"

中华医学超声杂志(电子版) ›› 2024, Vol. 21 ›› Issue (02) : 137 -142. doi: 10.3877/cma.j.issn.1672-6448.2024.02.005

头颈部超声影像学

双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值
赫兰1, 杨泽堃2, 张颖3, 王玉东2, 陈伟导2, 王一同3, 申锷4,()   
  1. 1. 200235 上海市第八人民医院超声医学科
    2. 100020 北京,推想医疗科技股份有限公司
    3. 116021 大连大学附属新华医院超声医学科
    4. 200030 上海市胸科医院/上海交通大学医学院附属胸科医院超声科
  • 收稿日期:2023-07-18 出版日期:2024-02-01
  • 通信作者: 申锷
  • 基金资助:
    上海市徐汇区智慧医疗专项研究项目(XHZH202108)

Diagnostic value of dual-input BCNN-ResNet model for classification of carotid plaque stability on ultrasound images

Lan He1, Zekun Yang2, Ying Zhang3, Yudong Wang2, Weidao Chen2, Yitong Wang3, E Shen4,()   

  1. 1. Department of Ultrasound Medicine, Shanghai Eighth People's Hospital, Shanghai 200235, China
    2. Infervision, Beijing 100020, China
    3. Department of Ultrasound Medicine, Xinhua Hospital, Dalian University, Dalian 116021, China
    4. Department of Ultrasound Medicine, Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
  • Received:2023-07-18 Published:2024-02-01
  • Corresponding author: E Shen
引用本文:

赫兰, 杨泽堃, 张颖, 王玉东, 陈伟导, 王一同, 申锷. 双输入BCNN-ResNet模型对超声颈动脉斑块稳定性的分类诊断价值[J]. 中华医学超声杂志(电子版), 2024, 21(02): 137-142.

Lan He, Zekun Yang, Ying Zhang, Yudong Wang, Weidao Chen, Yitong Wang, E Shen. Diagnostic value of dual-input BCNN-ResNet model for classification of carotid plaque stability on ultrasound images[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2024, 21(02): 137-142.

目的

构建颈动脉斑块超声图像分类数据集,构建一种甄别颈动脉斑块稳定性的双输入BCNN-ResNet深度学习模型,探讨双输入BCNN-ResNet模型对颈动脉斑块稳定性自动分类及诊断的效能。

方法

收集2021年1月至2023年3月在上海市第八人民医院、大连大学附属新华医院接受颈动脉超声检查者493例。由4名超声科医师观察颈动脉斑块声像图,经综合评判后选取颈动脉稳定斑块超声图像352张,易损斑块超声图像691张,构建共包含1043张颈动脉超声图像的数据集。使用ResNet-50模型作为基础模型,第一个ResNet-50网络输入斑块结构图像,提取结构特征;第二个ResNet-50网络输入裁剪后的斑块图像,获取像素特征,融合两组特征构建一个双输入BCNN模型。通过对图像进行分类监督学习的训练、内部验证和外部验证,比较新构建双输入BCNN-ResNet-50模型与ResNet-34、ResNet-50、ResNet-101、单输入BCNN-ResNet-34、双输入BCNN-ResNet-34、单输入BCNN-ResNet-50模型对颈动脉斑块稳定性的分类诊断效能。应用ROC曲线下面积、敏感度、特异度、准确性、真阳性、假阳性等指标评估模型的诊断效能。

结果

ROC曲线结果显示,双输入BCNN-ResNet-50模型对超声颈动脉斑块稳定性分类诊断的曲线下面积(AUC)为0.896。单输入BCNN-ResNet-50模型AUC为0.878,而ResNet-34、ResNet-50、ResNet-101、单输入BCNN-ResNet-34、双输入BCNN-ResNet-34模型AUC分别为0.857、0.860、0.859、0.864、0.868。双输入BCNN-ResNet-50模型对于颈动脉斑块的稳定性数据集分类及诊断的效能明显优于其他模型。

结论

双输入BCNN-ResNet模型可以自动甄别超声颈动脉斑块稳定性,此算法优于以往诊断模型,为后续临床颈动脉斑块稳定性筛查应用提供了技术参考。

Objective

To construct a carotid plaque ultrasound image dataset, build a dual-input BCNN-ResNet classification deep learning model for screening carotid plaque stability, and explore the efficacy of the dual-input bilinear convolutional neural network with residual network as the backbone network (BCNN-ResNet) model for automatic classification and diagnosis of carotid plaque stability.

Methods

A total of 493 cases were collected from January 2021 to March 2023 from those who underwent carotid ultrasonography at the Shanghai Eighth People's Hospital and Xinhua Hospital of Dalian University. Carotid plaque images were observed by four ultrasonographers, and 352 ultrasound images of stable carotid plaques and 691 images of vulnerable plaques were selected after comprehensive evaluation to construct a dataset containing a total of 1043 ultrasound images of carotid arteries. Using the ResNet-50 model as the base model, with the first ResNet-50 network inputting the structural plaque images to extract the structural features and the second ResNet-50 network inputting the cropped plaque images to obtain the pixel features, a dual-input BCNN model was constructed by fusing the two sets of features. By training the images with classification supervised learning, internal validation, and external validation, the newly constructed dual-input BCNN-ResNet model was compared with ResNet-34, ResNet-50, ResNet-101, single-input BCNN-ResNet-34, dual-input BCNN-ResNet-34, and single-input BCNN-ResNet-50 for diagnostic efficacy in classifying carotid plaque stability. The diagnostic efficacy of the model was assessed by applying metrics such as the area under the receiver operating characteristic (ROC) curve (AUC).

Results

ROC curve analysis showed that the AUC of the dual-input BCNN-ResNet-50 model for the classification and diagnosis of carotid plaque stability on ultrasound images was 0.896, while the AUC values of the single-input BCNN-ResNet-50 model, ResNet-34, ResNet-50, ResNet-101, single input BCNN-ResNet-34, and dual-input BCNN-ResNet-34 model AUC were 0.878, 0.857, 0.860, 0.859, 0.864, and 0.868, respectively. The efficacy of the dual-input BCNN-ResNet-50 model was significantly better than that of the other models in classifying and diagnosing carotid plaque stability.

Conclusion

The dual-input BCNN-ResNet model can automatically screen ultrasound images for carotid plaque stability, and this algorithm outperforms previous diagnostic models, providing a technical reference for clinical carotid plaque stability screening.

图1 颈动脉斑块分类超声声像图。图a,b为易损斑块数据集超声声像图,表现为形态不规则,纤维帽连续性中断,内部回声不均匀,可见呈低回声的脂质核部分以及高回声钙化;图c,d为稳定斑块数据集超声声像图,表现为形态规则,呈长条形,纤维帽完整,回声均匀或呈条形、粗大强回声斑
图2 双输入BCNN-ResNet网络模型建模流程图
图3 双输入BCNN-ResNet网络结构以及残差块示意图
表1 不同网络模型对超声颈动脉斑块稳定性诊断效能的比较
图4 双输入BCNN-ResNet网络模型评估超声颈动脉斑块稳定性的ROC曲线图
1
Wafa HA, Wolfe CDA, Emmett E, et al. Burden of stroke in Europe: thirty-year projections of incidence, prevalence, deaths, and disability-adjusted life years [J]. Stroke, 2020, 51(8): 2418-2427.
2
Wang W, Jiang B, Sun H, et al. Prevalence, Incidence, and mortality of stroke in China: Results from a nationwide population-based survey of 480 687 adults [J]. Circulation, 2017, 135(8): 759-771.
3
Skagen K, Skjelland M, Zamani M, et al. Unstable carotid artery plaque: new insights and controversies in diagnostics and treatment [J]. Croat Med J, 2016, 57(4): 311-20.
4
唐煜, 贾凌云, 邢英琦, 等. 中国缺血性脑卒中患者颅内外动脉病变分布及其与主要危险因素相关性的多中心研究[J]. 中华超声影像学杂志, 2019, 28(5): 369-374.
5
Buskens E, Nederkoorn PJ, Buijs-Van Der Woude T, et al. Imaging of carotid arteries in symptomatic patients: cost-effectiveness of diagnostic strategies [J]. Radiology, 2004, 233(1): 101-12.
6
Lekadir K, Galimzianova A, Betriu A, et al. A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound [J]. IEEE J Biomed Health Inform, 2017, 21(1): 48-55.
7
Li L, Hu Z, Huang Y, et al. Automatic multi-plaque tracking and segmentation in ultrasonic videos [J]. Med Image Anal, 2021, 74: 102201.
8
Biswas M, Saba L, Omerzu T, et al. A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: artificial intelligence framework [J]. J Digit Imaging, 2021, 34(3): 581-604.
9
莫莹君, 刘友员, 郭瑞斌. 基于深度神经网络的颈动脉斑块超声图像诊断技术研究 [J]. 临床超声医学杂志, 2022, 24(5): 382-385.
10
Johri AM, Nambi V, Naqvi TZ, et al. Recommendations for the assessment of carotid arterial plaque by ultrasound for the characterization of atherosclerosis and evaluation of cardiovascular risk: From the American Society of Echocardiography [J]. J Am Soc Echocardiogr, 2020, 33(8): 917-933.
11
国家卫生健康委员会脑卒中防治专家委员会血管超声专业委员会, 中国超声医学工程学会浅表器官及外周血管超声专业委员会, 中国超声医学工程学会颅脑及颈部血管超声专业委员会. 头颈部血管超声若干问题的专家共识(颈动脉部分) [J]. 中国脑血管病杂志, 2020, 17(6): 346-352, 封3.
12
Latha S, Muthu P, Dhanalakshmi S, et al. Emerging feature extraction techniques for machine learning-based classification of carotid artery ultrasound images [J]. Comput Intell Neurosci, 2022, 2022: 1847981.
13
Khanna NN, Jamthikar AD, Gupta D, et al. Effect of carotid image-based phenotypes on cardiovascular risk calculator: AECRS1.0. [J]. Med Biol Eng Comput, 2019, 57(7): 1553-1566.
14
赵媛, 孙夏, Aaron F, 等. 一种基于深度学习的颈动脉斑块超声图像识别方法 [J]. 中国医疗器械信息, 2017, 23(9): 9-11, 24.
15
Zhou R, Azarpazhooh MR, Spence JD, et al. Deep learning-based carotid plaque segmentation from B-Mode ultrasound images [J]. Ultrasound Med Biol, 2021, 47(9): 2723-2733.
16
Geiger MA, Flumignan RLG, Sobreira ML, et al. Carotid plaque composition and the importance of non-invasive in imaging stroke prevention [J]. Front Cardiovasc Med, 2022, 9: 885483.
17
黄玮, 聂维齐, 李晓庆, 等. 颈动脉斑块CEUS增强模式与TIA患者脑卒中发生的相关性 [J]. 中国超声医学杂志, 2022, 38(2): 121-124.
18
赫兰, 胡兵, 申锷. 基于动脉粥样硬化病变的泛血管疾病超声应用进展 [J/OL]. 中华医学超声杂志(电子版), 2022, 19(6): 594-596.
19
Cheng N, Ren Y, Zhou J, et al. Deep learning-based classification of hepatocellular nodular lesions on whole-slide histopathologic images [J]. Gastroenterology, 2022, 162(7): 1948-1961.e7.
20
Sakli N, Ghabri H, Soufiene BO, et al. ResNet-50 for 12-lead electrocardiogram automated diagnosis [J]. Comput Intell Neurosci, 2022, 2022: 7617551.
[1] 张胜男, 苗雅敬, 周虹, 韩高洁, 王静, 仝巧立, 张旭倩, 尹洪宁. 左心耳三维经食管超声测量与Watchman左心耳封堵器大小的相关性研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 107-113.
[2] 刘韩, 王胰, 舒庆兰, 彭博, 尹立雪, 谢盛华. 基于深度学习的超声心动图三尖瓣反流严重程度智能评估方法研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 121-127.
[3] 成汉林, 史中青, 戚占如, 王小贤, 曾子炀, 单淳劼, 钱隼南, 罗守华, 姚静. 基于深度学习的超声心动图动态图像切面识别研究[J]. 中华医学超声杂志(电子版), 2024, 21(02): 128-136.
[4] 刘逸群, 朱家安, 熊钰, 辛雨薇, 曲琳琳, 杨力, 李文雪, 田辉. 超声造影定量分析大鼠肝急性移植物抗宿主病的实验研究[J]. 中华医学超声杂志(电子版), 2024, 21(01): 75-81.
[5] 马琳, 彭驰涵, 朱晓霞, 范红霞, 杨家丽, 罗燕. 超声造影定量评估大鼠70%肝切除后不同类型门静脉狭窄残肝微循环灌注的实验研究[J]. 中华医学超声杂志(电子版), 2024, 21(01): 83-89.
[6] 王瑞, 张嘉炜, 张克诚, 周增丁. 基于深度学习的皮肤烧烫伤创面图像分割与分类及检测的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 172-175.
[7] 钟佩芝, 杜宇. 龋病诊断方法的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 73-79.
[8] 戴雨霖, 张新春. 人工智能在口腔修复诊疗中的应用与进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 65-69.
[9] 邢益民, 张天飞, 戴慧勇. 胃肠充盈超声造影检查在反酸、嗳气患者临床诊断中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 303-306.
[10] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[11] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[12] 刘国安, 陈一杰, 赖江琼, 余丽平, 康春梅. 高频超声联合多普勒超声诊断腹外疝的临床价值[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(01): 106-110.
[13] 焦莉莉, 周芊池, 凌梦芸, 魏红玲, 徐缨. 血清SAA、CA19-9结合超声内镜对结直肠癌术前分期的诊断价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 146-150.
[14] 莫鹏, 郭杏春, 梁秀娟, 王耀明. 超声引导与CT引导射频消融治疗肝细胞癌患者疗效及预后比较[J]. 中华消化病与影像杂志(电子版), 2024, 14(02): 151-154.
[15] 储慧民. 心腔内超声心动图指导下的左心耳封堵术标准流程解析[J]. 中华心脏与心律电子杂志, 2024, 12(01): 58-58.
阅读次数
全文


摘要